
PWM Guide: Zen Buzzer and Tri-Colour LEDs

For Linux Kernel 4.9+ (BeagleBone 2018-01-28 image)
by Brian Fraser
Last update: November 1, 2019

This document guides the user through:
1. Loading PWM support.
2. Driving the Zen cape's buzzer via PWM from a Linux terminal.
3. Driving the Zen cape's tri-colour LED via three PWM channels from the Linux terminal.

Table of Contents
1. PWM Basics..2
2. Load PWM Device Tree...3

2.1 Load PWM Device Tree – Universal Cape...3
2.2 Load PWM Device Tree – Edit uEnv.txt...3

3. Linux PWM: Buzzer...5
4. Tri-colour LED..7

Formatting:
1. Host (desktop) commands starting with $ are Linux console commands:

$ echo "Hello world"

2. Target (board) commands start with #:
echo "On embedded board"

3. Almost all commands are case sensitive.

Revision History:
• Nov 1: Initial version.

1. PWM Basics
Pulse-width modulation (PWM) is a way of generating a digital wave form (think of a clock signal).
You can specify two main components of the digital wave form:

1. Period: How much time is there
between the start of one cycle and
the next. This is the time between
rising edges of the wave form.

2. Duty: This is the percentage of the
cycle which the signal is high (or
low, depending on its configuration).

Together, these two parameters allow you to
generate waves such as those shown in
Figure 1.

In some situations an analog voltage is
needed. A PWM wave can be used to create
such a voltage by applying extra hardware
(capacitors) to smooth out, or average out,
the wave form. For example, when the
signal is between 0 and 3.3V, a 50% duty
cycle would average out to 1.65V (half of
3.3V).

The PWM channels used by the Zen cape are listed below. Note that not all PWM channels are used by
the Zen cape: some are unused on the BBB, and others are used by the HDMI hardware.

Zen Cape
Use

PWM
Channel

BBB
Pin

Linux Path Notes

Buzzer PWM-0A P9-22 /sys/class/pwm/pwmchip0/pwm0/

Red LED PWM-1B P9-16 /sys/class/pwm/pwmchip2/pwm1/ Shares PWM hardware timer
with Blue LED (PWM-1A)

Green LED PWM-2A P8-19 /sys/class/pwm/pwmchip4/pwm0/

Blue LED PWM-1A P9-14 /sys/class/pwm/pwmchip2/pwm0/ Shares PWM hardware timer
with Red LED (PWM-1B)

Note that for PWM channels which share PWM hardware timers (red and blue), you cannot change the
period of these channels independently. See Section 4 for more.

Figure 1: PWM wave forms for different duties, from
https://www.arduino.cc/en/Tutorial/PWM

2. Load PWM Device Tree
Linux can learn about the PWM hardware in two ways. See next sections for detailed directions for the
appropriate way.

1. Universal cape
If you have not edited the /boot/uEnv.txt file to load any device tree overlays, nor have any
overlays loading for installed capes, then the universal cape will automatically be loaded for
you.

2. Edit uEnv.txt to load PWM device tree overlays
If you are loading custom device tree overlay files via /boot/uEnv.txt then you’ll need to
once again edit uEnv.txt to load more device tree overlays.

Unsure which applies to you? Try the first step of the universal cape section and see if it works!

2.1 Load PWM Device Tree – Universal Cape

If using the universal cape, do the following:

1. Set the buzzer’s pin to PWM
sudo config-pin p9_22 pwm

◦ If this fails with a message like the following, it likely means that the universal cape is not
loaded: jump to the next section
$ sudo config-pin p9_22 pwm
P9_22 pinmux file not found!
bash: /sys/devices/platform/ocp/ocp*P9_22_pinmux/state: No such file or
directory
Cannot write pinmux file:
/sys/devices/platform/ocp/ocp*P9_22_pinmux/state

◦ This configures the CPU’s pin connected to the buzzer for use with PWM (each pin has
multiple possible functions to select from).

◦ You can list all the functions the pin can be configured for using:
config-pin -l P9_22

◦ You can check the current state of the pin:1

config-pin -q P9_22

2. If you are using the LEDs on the Zen cape, you will need to execute the following commands:
config-pin P9_14 pwm
config-pin P9_16 pwm
config-pin P8_19 pwm

◦ See table at start of this guide listing mapping of each LED to PWM, pins, and paths.

◦ NOTE: P9_14 must be configured before P9_16 or else you might not be able to export
some PWM channels in the next step.

2.2 Load PWM Device Tree – Edit uEnv.txt

If loading the overlay via uEnv.txt, do the following

1. Update the cape overlays:

1 This is similar to the following command:
cat /sys/devices/platform/ocp/ocp\:P9_22_pinmux/state

sudo apt-get update
sudo apt-get install bb-cape-overlays

◦ You must have an internet connection for this to succeed.

2. Ensure you have an up-to-date version:
apt-cache show bb-cape-overlays
Package: bb-cape-overlays
Version: 4.4.20190922.0-0rcnee0~stretch+20190922
Architecture: armhf
....

3. Copy the current uEnv.txt file. This is necessary for recovering from anything going wrong!
sudo cp /boot/uEnv.txt /boot/uEnv-BeforePwm.txt

4. Edit the uEnv.txt file to enable the PWM overlays
sudo nano /boot/uEnv.txt

◦ Edit the Additional custom capes section.
Below shows the setup you’ll have if you are already loading the audio cape and the I2C-1
cape. If you are not loading these, you may comment out those lines
###Additional custom capes
uboot_overlay_addr4=/lib/firmware/BB-BONE-AUDI-02-00A0.dtbo
uboot_overlay_addr5=/lib/firmware/BB-I2C1-00A0.dtbo
uboot_overlay_addr6=/lib/firmware/BB-PWM0-00A0.dtbo
uboot_overlay_addr7=/lib/firmware/BB-PWM1-00A0.dtbo
uboot_overlay_addr3=/lib/firmware/BB-PWM2-00A0.dtbo

◦ Note that you can use uboot_overlay_addr0 through uboot_overlay_addr7 for any of
the capes being loaded. If you use 0-3, it replaces the cape support for any automatically
detected capes configured to load at that slot. If you have no physical capes connected
(which are automatically detected), then you can use any of the 8 slots you like. This is why
the above snippet uses 3 through 7. The number dictates the order they are loaded, which
should not matter here.

◦ You only need to load the capes you need.

5. Reboot the target

6. Troubleshooting

◦ See the Audio guide’s last section (on the course website) to recover from a corrupted
uEnv.txt. You should be able to copy back the /boot/uEnv-BeforePwm.txt to restore
your previous working state.

3. Linux PWM: Buzzer
NOTE ON SILENCE: The buzzer can be manually turned off by removing the jumper (black
rectangle) just below the buzzer (left of the joystick) on the Zen cape.

1. Export the PWM channel:
echo 0 > /sys/class/pwm/pwmchip0/export

• The 0 tells Linux to export the config files for part A of the PWM (P8_19).
Write a 1 for part B (P8_13).

• The pwmchip0 directory means this is for PWM A.

2. View the PWM files in the sysfs:
cd /sys/class/pwm/pwmchip0/pwm0/
ls
capture duty_cycle enable period polarity power uevent

3. Set the period of a cycle (via period, in ns), duration of each “on” pulse (duty_cycle, in ns),
and if it is running (run, a 1 for on):
echo 100000 | sudo tee period
echo 50000 | sudo tee duty_cycle
echo 1 | sudo tee enable

• You can manually silence the buzzer by pulling the jumper beside it. When put the jumper
back in, make sure you connect it to the correct pins! (not the big P8 header!)

• Note on times:
1 second
= 1,000 miliseconds [ms]
= 1,000,000 microseconds [us]
= 1,000,000,000 nano-seconds [ns]

• For the buzzer, an easy way to work is always make the duty_cycle half of the period. It’s
the period that controls the frequency of the sound played (the note).

4. Turn off with:
echo 0 | sudo tee enable

5. Make it play a lower pitched sound by giving it a larger period (ns):
echo 1000000 | sudo tee period
echo 500000 | sudo tee duty_cycle

• Ensure it’s enabled (write a 1 to enable) for sound to be generated.

6. Make it play a higher pitched sound by giving it a smaller period. Since the period cannot be
less than the duty cycle (period cannot be on longer than a single cycle), we must first set the
duty to be less than we want the period to be:
echo 0 | sudo tee duty_cycle
echo 100000 | sudo tee period
echo 50000 | sudo tee duty_cycle

7. You can play specific notes on the buzzer. First find the frequency for the note you want (try
online) and then compute the period by:
Period = (1 / Frequency [cycles per s]) * 1,000,000,000 [ns per s]

Set the duty to be half of the period.

• For example, middle C is 261.6Hz. This gives a period of 3,822,256ns and duty
1,911,128ns:
echo 0 | sudo tee duty_cycle
echo 3822256 | sudo tee period
echo 1911128 | sudo tee duty_cycle

8. Troubleshooting:

• Unknown folder when you try to export the PWM? You likely don’t yet have the hardware
support loaded yet. Follow the steps in section 2 - Load PWM Device Tree.

• No sound?

• Ensure you have the jumper correctly installed connecting the two pins just below the
buzzer (left of the joystick).

• Ensure you have it running (# echo 1 | sudo tee enable)

• Ensure you have set the duty to be half of the period.

• While trying to change the period, if you get:
"bash: echo: write error: Invalid argument"

You are likely trying to change the period to a value less than the duty cycle. First change
the duty cycle to 0, then retry your change.

4. Tri-colour LED
1. Export the PWM functionality for LEDs:

• Blue
echo 0 | sudo tee /sys/class/pwm/pwmchip2/export

• Red
echo 1 | sudo tee /sys/class/pwm/pwmchip2/export

• Green
echo 0 | sudo tee /sys/class/pwm/pwmchip4/export

2. Set the period for the LED PWM channels.
echo 100000 | sudo tee /sys/class/pwm/pwmchip2/pwm0/period
echo 100000 | sudo tee /sys/class/pwm/pwmchip2/pwm1/period
echo 100000 | sudo tee /sys/class/pwm/pwmchip4/pwm0/period

• The red and blue PWM channels share hardware so you cannot change the period of these
channels independently. This is not an issue for us: we just need to set the duty cycle.

• In fact, the software won't let you change the red/blue’s period at all if you have both PWM
channels' periods set. Specifically, you can set and change the period of one of the red or
blue PWM channels until the other one is given a period. Then, you can only change the
period of one to match the other.

• So, in other words, set the period to something reasonable to start and then don’t change it.

3. Enable the PWM
echo 1 | sudo tee /sys/class/pwm/pwmchip2/pwm0/enable
echo 1 | sudo tee /sys/class/pwm/pwmchip2/pwm1/enable
echo 1 | sudo tee /sys/class/pwm/pwmchip4/pwm0/enable

4. LED brightness is controlled by how much time it is being turned on per cycle (the duty cycle).
Off Set duty_cycle to 0
50% Set duty_cycle to 50000
100% Set duty_cycle to 100000

• For example: blue to 0%, red to 100%, green to 0%):
echo 0 | sudo tee /sys/class/pwm/pwmchip2/pwm0/duty_cycle
echo 100000 | sudo tee /sys/class/pwm/pwmchip2/pwm1/duty_cycle
echo 0 | sudo tee /sys/class/pwm/pwmchip4/pwm0/duty_cycle

5. Generate your own colours by specifying the RGB components. For example, purple is 50%
red, 0% green, 50% blue.

echo 50000 | sudo tee /sys/class/pwm/pwmchip2/pwm0/duty_cycle
echo 50000 | sudo tee /sys/class/pwm/pwmchip2/pwm1/duty_cycle
echo 0 | sudo tee /sys/class/pwm/pwmchip4/pwm0/duty_cycle

• The colours of the LED don't mix together very well, so it can hard to create exactly the
colour you have in mind. However, try putting a piece of paper over it to defuse the light
and you may find it seems to mix better.

6. You may find the following script useful. Copy to a file driveZenLEDs.sh, change to
executable and run with:
./driveZenLEDs.sh 100000 50000 0
#!/bin/sh
set -x
echo "Can pass R G B parameters (0 = off; 100,000 = on)"

Figure out values for writing
RED=50000
GREEN=50000
BLUE=50000
if [$# -eq 3]; then

RED=$1
GREEN=$2
BLUE=$3

fi

IF USING UNIVERSAL CAPE:
Configure pins for PWM
MUST have P9_14 before P9_16!
#config-pin P9_14 pwm
#config-pin P9_16 pwm
#config-pin P8_19 pwm

#config-pin -q P9_14
#config-pin -q P9_16
#config-pin -q P8_19

Export the PWM folders to work with.
if [! -d /sys/class/pwm/pwmchip2/pwm0]; then

echo 0 | sudo tee /sys/class/pwm/pwmchip2/export
fi
if [! -d /sys/class/pwm/pwmchip2/pwm1]; then

echo 1 | sudo tee /sys/class/pwm/pwmchip2/export
fi
if [! -d /sys/class/pwm/pwmchip4/pwm0]; then

echo 0 | sudo tee /sys/class/pwm/pwmchip4/export
fi

Setup period
echo 100000 | sudo tee /sys/class/pwm/pwmchip2/pwm0/period
echo 100000 | sudo tee /sys/class/pwm/pwmchip2/pwm1/period
echo 100000 | sudo tee /sys/class/pwm/pwmchip4/pwm0/period

Set the color (duty-cycle)
echo "Red: $RED, Green: $GREEN, Blue: $BLUE"
echo $BLUE | sudo tee /sys/class/pwm/pwmchip2/pwm0/duty_cycle
echo $RED | sudo tee /sys/class/pwm/pwmchip2/pwm1/duty_cycle
echo $GREEN | sudo tee /sys/class/pwm/pwmchip4/pwm0/duty_cycle

Enable
echo 1 | sudo tee /sys/class/pwm/pwmchip2/pwm0/enable
echo 1 | sudo tee /sys/class/pwm/pwmchip2/pwm1/enable
echo 1 | sudo tee /sys/class/pwm/pwmchip4/pwm0/enable

7. Troubleshooting:

• If you get the messages for an unknown folder when you try to export the PWM? You likely
don’t yet have the hardware support loaded yet. Follow the steps in section 2 - Load PWM
Device Tree.

• “Permission denied” error trying to write to a file: You either incorrectly used sudo tee, or
have not yet exported the PWM for that pin.

• “Device or resource busy” when trying to export: the PWM is likely already exported.

• “Invalid argument” when writing 1 to the enable file likely means you have not yet set the
period or duty_cycle correctly.

• Unable to change period of red/blue LED: This is by design, since both PWMs are linked
and the period cannot be changed. It is best to not change the period of any of the LED
PWM channels for this reason.

• When exporting the red LED channel (pwm1 from pwmchip4) if you get the following:
echo 1 | sudo tee /sys/class/pwm/pwmchip2/export
sh: echo: I/O error

then ensure that you have configured the pins for PWM, and that P9_14 was configured
before before P9_16.

	1. PWM Basics
	2. Load PWM Device Tree
	2.1 Load PWM Device Tree – Universal Cape
	2.2 Load PWM Device Tree – Edit uEnv.txt

	3. Linux PWM: Buzzer
	4. Tri-colour LED

