
Debugging Guide for GDB and VS Code
by Brian Fraser
Last update: Feb 16, 2021

Guide targets:
• Beagle Bone version: 2018-01-28
• Host OS version: Ubuntu 20.04

This document guides the user through:
1. Debugging an application using GDB command prompt.
2. Debugging an application using Eclipse.
3. Generating and loading core files.
4. Stripping debug symbols from a binary.

Table of Contents
1. Installing gdb-multiarch..2
2. GDB..3
3. VS Code for Graphical Debugging...5

3.1 Makefile in VS Code...7
4. Eclipse for Graphical Debugging..8

4.1 Eclipse Installation and Project Setup...8
4.2 Debugging with Eclipse..9

5. Core Dumps..12
6. Stripping a Binary...13
7. Valgrind...14

Formatting
1. Commands for the host Linux’s console are show as:

(host)$ echo "Hello PC world!"

2. Commands for the target (BeagleBone) Linux’s console are shown as:
(bbg)$ echo "Hello embedded world!"

3. Commands starting with (gdb) are GDB console commands.
4. Almost all commands are case sensitive in Linux and GDB.

Revision History:
• Oct 2, 2019: Add directions to working with Ubuntu 18.04
• Jan 31, 2021: Add VS Code graphical debugging, update to Ubuntu 20.04
• Feb 16, 2021: Added directions for building via a Makefile in VS Code

PDF Created Feb 16, 2021 1/15

1. Installing gdb-multiarch
The host needs a cross-debugger to debug an application running on the target. GDB (GNU Debugger)
has a version which supports multiple architectures (such as ARM, MIPS, …) named gdb-multiarch.

1. Install GDB and GDB multi-architecture:
(host)$ sudo apt-get install gdb gdb-multiarch

2. Run gdb-multiarch and check its version.
(host)$ gdb-multiarch -v

• Should display first line similar to the following:
GNU gdb (Ubuntu 9.2-0ubuntu1~20.04) 9.2

3. Troubleshooting:

• If you are having problems getting the correct version to install, you can double check that
apt-get is reading the correct repository to find GDB version 8.2 (or better?).

View GDB-Multiarchitecture:
(host)$ apt-cache showpkg gdb-multiarch

If the desired version of the package is not shown, double check your sources.list file,
re-run “apt-get update”

• Changing GDB multiarch version
• apt-get for gdb-multiarch should normally work; however, some version

mismatches between gdbserver on the target and gdb-multiarch on the host are
possible. For example, target gdbserver 7.12.0.20016007 is incompatible with host
gdb-multiarch 8.1 (fails to execute correctly, load libraries, ...). Steps to resolve:

• Remove any existing versions of GDB and GDB multi-architecture from the host:
(host)$ sudo apt-get purge gdb gdb-multiarch

• Add the Ubuntu repository you need to /etc/apt/sources.list:1

(host)$ sudo nano /etc/apt/sources.list

• At the end of the file, add the following lines (change ‘cosmic’ to distro you need):
Added for GDB 8.2 (replacing 8.1)
deb http://ca.archive.ubuntu.com/ubuntu cosmic main universe

• Note: /etc/apt/sources.list is a protected file, so must use sudo to edit.

• Update the packages available through the new repository:
(host)$ sudo apt-get update

• Install GDB and GDB multi-architecture:
(host)$ sudo apt-get install gdb gdb-multiarch

• You may need to use the “fix” option first before the above commands will work:
(host)$ sudo apt-get -f install

1 For Ubuntu 14.xx, add the utopic repository to get gdb-multiarch 7.8.1ubuntu4:
deb http://old-releases.ubuntu.com/ubuntu utopic main universe

PDF Created Feb 16, 2021 2/15

http://ca.archive.ubuntu.com/ubuntu

2. GDB
GDB is a text-debugger common to most Linux systems. For remote debugging, we'll run gdbserver
on the target, and the cross-debugger (gdb-multiarch) on the host.

1. Build your project using the -g option to ensure the file gets debug symbols.

• This likely means adding the -g option to your CFLAGS variable in your Makefile.

2. On the target, install gdbserver (if not already installed):

• Ensure you have internet access. If not, see the networking guide.
(bbg)$ ping google.ca

• Install GDB server on the target:
(bbg)$ sudo apt-get update
(bbg)$ sudo apt-get install gdbserver

3. On the target, change to the directory where your application is (assumed to be named
helloWorld), and launch gdbserver:
(bbg)$ gdbserver localhost:2001 helloWorld

• It should look like the following (pid likely to be different):
(bbg)$ gdbserver localhost:2001 helloWorld
Process helloWorld created; pid = 1068
Listening on port 2001

4. On the host, in the directory of your helloWorld executable, launch the cross-debugger:
(host)$ gdb-multiarch helloWorld

5. At the GDB prompt "(gdb)", type in the following command to connect to the target:
(gdb) target remote 192.168.7.2:2001

• Change the IP address to the IP address of the target.

• The host should look like this:
(host)(host)$ gdb-multiarch -q helloWorld
(gdb) target remote 192.168.7.2:2001
Remote debugging using 192.168.7.2:2001
warning: Unable to find dynamic linker breakpoint function.
GDB will be unable to debug shared library initializers
and track explicitly loaded dynamic code.
0x400007b0 in ?? ()
(gdb)

• The target should now have displayed the additional line (your IP may be different):
Remote debugging from host 192.168.7.1

6. You now have a GDB session. You should be familiar with the following GDB commands
(parts in italics can be replaced by other values):
• list, frame, quit

• info breakpoints, break main, break lineNumberHere, delete 1

• continue, print myVar, step, next

• bt, info args, info frame, info local, up, down

• Control + C (to interrupt program when running to get gdb prompt).

7. Troubleshooting:

• Ensure your host can communicate with the target. Try pinging the board and opening a ssh
prompt to the board. Refer to the quick-start guide and associated trouble shooting steps if

PDF Created Feb 16, 2021 3/15

this fails.

• If you get the wrong version of gdbserver, it may not run correctly on the target. When it is
run without arguments, you should see the following:
Usage: gdbserver [OPTIONS] COMM PROG [ARGS ...]

gdbserver [OPTIONS] --attach COMM PID
gdbserver [OPTIONS] --multi COMM

COMM may either be a tty device (for serial debugging), or
HOST:PORT to listen for a TCP connection.

Options:
 --debug Enable general debugging output.
 --remote-debug Enable remote protocol debugging output.
 --version Display version information and exit.
 --wrapper WRAPPER -- Run WRAPPER to start new programs.
 --once Exit after the first connection has closed.

• You can ignore any errors about mapping shared library sections. At the moment we do not
need to worry about debugging these.

• If bt does not yield a meaningful stack, it may mean that you are in some library or OS code
that you do not control. Try setting a break-point in a part of your code you know to be
running and then let execution continue. It should hit your breakpoint and show you
meaningful content.

PDF Created Feb 16, 2021 4/15

3. VS Code for Graphical Debugging
Section optional: You may use VS Code or Eclipse; you need not use both.

1. Install VS Code on the host:
(host)$ sudo apt-get install snap
(host)$ sudo snap install --classic code

2. From the folder of your code, launch VS Code:
(host)$ code .

3. Install the “GDB Debug” extension in VS Code via the Extensions view on the left.

4. Create a launch.json file by Run –> Add Configurations. You may select anything when
prompted, and then overwrite launch.json with the following:2:

{
 // SOURCE: https://medium.com/@karel.l.vermeiren/ \
 // cross-architecture-remote-debugging-using-gdb-with-visual-studio-code-vscode-on-linux-c0572794b4ef
 // Use IntelliSense to learn about possible attributes.
 // Hover to view descriptions of existing attributes.
 // More information at: https://go.microsoft.com/fwlink/linkid=830387
 "version": "0.2.0",
 "configurations": [
 {
 "name": "GDB debug - custom",
 "type": "cppdbg",
 "request": "launch",
 "program": "~/cmpt433/public/myApps/my_awesome_app_here",
 "args": [],
 "stopAtEntry": true,
 "cwd": "${workspaceFolder}",
 "environment": [],
 "externalConsole": false,
 "MIMode": "gdb",
 "setupCommands": [
 {
 "description": "Enable pretty-printing for gdb",
 "text": "-enable-pretty-printing",
 "ignoreFailures": true
 }
],
 "miDebuggerPath": "/usr/bin/gdb-multiarch",
 "miDebuggerServerAddress": "192.168.7.2:2001"
 }
]
}

• Change “program” to be the path, on the host, to the cross-compiled executable.

• If needed, update miDebuggerServerAddress to the IP of the target.

5. On the host, cross-compile your program with the -g flag to GCC, which adds debug
information.

• Hint: Just have your makefile include the -g flag all the time.

2 File launch.json described by Karel Vermeiren via medium.com (retrieved Jan 30, 2021)

PDF Created Feb 16, 2021 5/15

https://medium.com/@karel.l.vermeiren/cross-architecture-remote-debugging-using-gdb-with-visual-studio-code-vscode-on-linux-c0572794b4ef

6. On the target, from the NFS folder containing the cross-compiled executable of the program to
debug, launch GDB server:
(bbg)$ cd /mnt/remote/myApps
(bbg)$ gdbserver localhost:2001 ./my_awesome_app_here

7. In VS Code, select Run –> Start Debugging.

• On the target, you should now see it display a new line of:
Remote debugging from host 192.168.7.1

8. Debug your application using the VS Code graphical debugger.

• As you step into code in other source files, VS Code should show you the code.

• If your program crashes, VS Code should detect an exception and stop at the line of code
which generate the error.

9. Steps to rebuild and re-debug your program:

• Stop any debug sessions.

• Rebuild application on host, and copy to NFS mount

• Re-run gdbserver on target

• Reconnect to gdbserver from the host.

10. Optional: It is possible to setup VS Code to SCP your compiled executable to the target, and
then run gdbserver directly. See Karel Vermeiren’s guide for more if interested.

11. Troubleshooting

• If VS Code is unable to connect to the target with the error:
“Unable to start debugging. Unexpected GDB output from command “-target-
select remote … Connection timed out.”

It likely means:

• gdbserver is not running on the target

• The IP address or port in the launch.json file for VS Code does not match the target.
Find the IP address of the target using ifconfig.

• If unable to see printf() output on VS Code while debugging: this is expected.
printf() outputs from the program being debugged will be displayed on the terminal for
the target device (SSH or serial) because the program is actually running on the target.

PDF Created Feb 16, 2021 6/15

https://medium.com/@karel.l.vermeiren/cross-architecture-remote-debugging-using-gdb-with-visual-studio-code-vscode-on-linux-c0572794b4ef

3.1 Makefile in VS Code

Optional: Configure VS Code to run the all target in your makefile with the Terminal → Run Build
Task (Ctrl + Shift + B)

1. Open VS code in a folder containing your makefile

2. Go to the menu Terminal –> Configure Default Build Task

• Select any type (we’ll be replacing it)

• This creates a .vscode/tasks.json file

3. Replace the contents of the .vscode/tasks.json file with the following:
{
"version": "2.0.0",
"tasks": [
{

"label": "Make: run project's Makefile",
"command": "make",
"args": [
"all"

],
"options": {
"cwd": "${workspaceFolder}"

},
"problemMatcher": [
"$gcc"

],
"group": {
"kind": "build",
"isDefault": true

},
}

]
}

4. Build your project via the menu Terminal → Run Build Task (Ctrl + Shift + B)

• The built-in terminal should now show the results of your build.

5. If your build has any errors you can Ctrl + click on the filename/line-number in the build output
and then press ENTER to have VS Code jump to that location in your code.

PDF Created Feb 16, 2021 7/15

4. Eclipse for Graphical Debugging
Section optional: You may use VS Code or Eclipse; you need not use both.

4.1 Eclipse Installation and Project Setup

1. Use snap to install Eclipse:
(host)$ sudo apt-get install snap
(host)$ sudo snap install --classic eclipse

2. Launch Eclipse (should have an icon, or run eclipse)

• You may be asked about a workspace when starting it; it is fine to accept the default one.

• If Eclipse fails to load with an error directing you to a log file saying
java.lang.ClassNotFoundException:
org.eclipse.core.runtime.adaptor.EclipseStarter

then ensure no other versions of Eclipse are installed and repeat the install:

(host)$ sudo apt-get purge eclipse
(host)$ sudo apt-get autoremove
(host)$ sudo snap remove eclipse
(host)$ sudo snap install eclipse

3. Install C/C++ support for Eclipse:

• Launch Eclipse (should have desktop icon, or run eclipse from terminal)

• Go to Help → Install New Software

• In the drop-down at the top, select “All Available Sites”

• Expand Programming Languages, and check “C/C++ Development Tools”

• Click Finish, accept licenses, etc.

4. Create a new project for a folder with a makefile

• Go to File → New → Project...

• Under C/C++, select "Makefile Project with Existing Code"

• Browse to the directory of your existing project with a makefile.

• Select the “Cross GCC” tool chain (if available).

• Name the project and click Finish.

5. Setup the Makefile support for your project.

• Display the Make Target view:
Go to Window → Show View → Other. Under Make, select Make Target.

• In the Make Target view, create a new target (green bulls-eye icon) for your desired
makefile target.

• Note, by default Eclipse expects a clean and all target. You can change these by right-
clicking your project, select Properties; under C/C++ Build, select the Behaviour tab.

PDF Created Feb 16, 2021 8/15

• Double click on the new make target. The build output should appear in the Console view.
You may need to manually switch to the Console view (bottom).

6. Suggested Settings:

• Auto-save all files when compiling:
Window → Preferences, in left expand General → Workspace → Build
Check “Save automatically before build”.

7. Eclipse coding tips:

• Ctrl+B to build. View the Console window to see the build messages.

• Eclipse will show you the errors found during your last compile. If you correct the error but
don't rebuild yet, Eclipse will still show the error information from the last build.

• Eclipse does some code analysis of its own (in addition to the normal build process). Eclipse
will show an indication of some problems even without build. However, sometimes it may
find things which it thinks are errors but will actually build OK.

• What Eclipse rebuilds depends on your makefile. If you setup dependencies correctly, it will
rebuild a .c file when it changes. However, often the .h files are missed. So, if you change a
.h file you may need to do a make-clean and then a re-build (make targets clean and all,
possibly).

4.2 Debugging with Eclipse

1. In Eclipse, create the debug configuration for your project:

• With your project selected, on the menu go to Run → Debug Configurations.

• If this does not work, you should be able to right-click on your project and select Debug
As..., and then debug configurations.

• Double click on the "C/C++ Remote Application" item on the left to create a new
configuration.

2. At the top, give the debug configuration a name such as “MyProjectNameHere Remote
Debugging”

3. Setup the debug target (Main tab):

• Change the Build settings to "Disabled auto build"

• Select the “C/C++ Application” using the Browse button. Select the application you want to
debug. This should be the application with debug symbols included (not stripped). This will
likely be the compiled version of your current project, possibly (though not necessarily) in
the /home/<yourid>/cmpt433/public/ folder. Note: Does not work with ~ for your home
directory.

4. Change to the Debugger tab:

• Set the GDB debugger by browsing to gdb-multiarch debugger. The path is likely:
/usr/bin/gdb-multiarch

• Hint: Locate where gdb-multiarch is with:
(host)$ whereis gdb-multiarch

PDF Created Feb 16, 2021 9/15

• Still on the Debugger tab, but on the Connection sub-tab, set the connection information:
Type: TCP

Host name or IP address: 192.168.7.2 (the IP Address of the target on your network)
Port number: 2001

5. Click Apply to save the settings.

6. On the target, launch gdbserver using the same command as used for text-debugging.
(bbg)$ gdbserver localhost:2001 helloWorld

• To do this, you must already have the compiled version of your project on the target (via
NFS works). This file must have been compiled with the -g option if you want symbols to
be available (i.e. function/variable names etc).

• Hint: To pass arguments to your program being debugged, use the command such as the
following where the arguments 10, 42, end, of, world are passed in.:
(bbg)$ gdbserver localhost:2001 helloWorld 10 42 end of world

7. On the Host, click the Debug button. It should connect to the target.

• It may ask you if you want to switch to the debug perspective; say yes.

• Use the integrated debugger to step-through and debug your application. The application is
actually run on the target, so any effects of the program will take effect on the target. For
example, printf() statements output through the console and code to flash an LED will
still flash the target's LED.

8. You can switch back to the normal perspective by clicking C/C++ button in the top-right of
Eclipse.

9. Later, to re-debug your application, you will need to:

• Re-run gdbserver on the target:
(bbg)$ gdbserver localhost:2001 helloWorld

• Re-launch the debugger in Eclipse by clicking the drop-down arrow beside the debugger
icon on the toolbar. Then select the GDB launch profile you setup.

• Note that you cannot just click the debug button, as this will launch it locally.

• If you right-click the project and through Debug as... select Local C/C++ Application, it will
not work because you cannot run the project on the local PC (host).

10. Trouble shooting:

• If Eclipse complains that it cannot find the application when you try to debug, you may
need to relaunch the Debug Configuration window, and click "Debug" from there.

PDF Created Feb 16, 2021 10/15

• If you are having troubles connecting, ensure that your communication to the target is
correctly configured. Try using ping or ssh.

• If you cannot connect to the target, ensure the target is running gdbserver, and correctly
configured with the same port number that Eclipse.

• Eclipse may display warnings from GDB about “Unable to find dynamic linker breakpoint
function”, or about unable to load symbols for shared libraries. You may disregard these for
the moment.

• Eclipse displays error “Launch failed. Binary not found.” You likely selected to debug the
application on the local PC instead of running it through the remote GDB server.

• Eclipse displays error “Launching <project> has encountered an error. Error in final launch
sequence”, with details saying “connection timed out”. This means there is a problem
communicating with the target.

• Ensure that gdbserver is correctly executing on the target. You'll have to restart it each
time you restart debugging the application.

• Ensure the IP address of the target is correct.

• Ensure the port number used in Eclipse matches the port number used to start
gdbserver on the target.

• Ensure you have network connectivity between the host and target using ping.

• If the panels and tool bars inside Eclipse seem to be out of place or messed up, try:
1) Go to Window → Perspective → Reset Perspective…, and then click Yes to reset all
views to default locations.

2) If missing tool bar buttons: Window → Show Toolbar

PDF Created Feb 16, 2021 11/15

5. Core Dumps
A core file is generated when the application crashes (usually due to a segmentation fault).

1. Configure Linux on the target to generate core files:
(bbg)$ ulimit -c unlimited

• Check the change with:
(bbg)$ ulimit -a

• The output should show "core file size (blocks, -c) unlimited"

2. Change to the /tmp directory on the target and run the program which crashes. For example:
(bbg)$ cd /tmp
(bbg)$ /mnt/remote/myApps/thisProgramCrashes

• When it crashes, it should say: "Segmentation fault (core dumped)"

• If you are not in the /tmp folder the core file may be created but be empty (0 bytes).

3. Check the core file with:
(bbg)$ ls -l core

• Its size should be greater than 0 bytes.

4. Change the permissions on the core file:
(bbg)$ chmod a+rw core

5. Copy the core file to the shared NFS directory:
(bbg)$ cp core /mnt/remote

• You may need to ensure that your NFS directory has global write permission. This may be
related to Linux permissions, or the NFS server setup.

6. On the host, under your NFS public directory run the cross-debugger on the core file:
(host)$ cd ~/cmpt433/public
(host)$ gdb-multiarch pathToApplicationThatCrashed core

• For example:
(host)(host)$ gdb-multiarch ./myApps/segfaulter core
GNU gdb (Ubuntu 8.1-0ubuntu3) 8.1.0.20180409-git
...
Reading symbols from ./segfaulter...done.
[New LWP 2415]

warning: Could not load shared library symbols for 2 libraries, e.g.
/lib/arm-linux-gnueabihf/libc.so.6.
Use the "info sharedlibrary" command to see the complete listing.
Do you need "set solib-search-path" or "set sysroot"?
Core was generated by `./segfaulter'.
Program terminated with signal SIGSEGV, Segmentation fault.
#0 0x004b95da in dereferenceIt (ptr=0x0) at segfaulter.c:5
5 return *ptr;
(gdb)

• Or, instead of cross debugging from the host, one can run GDB natively on the target:
(bbg)$ cd /mnt/remote/myApps/
(bbg)$ gdb pathToApplicationThatCrashed core

7. Use the standard GDB commands to debug the application.

• Hint: Start with a back-trace (bt), and print variables (print myVarName)

PDF Created Feb 16, 2021 12/15

8. Optional (may be out-dated): Here is another way to generate a core dump which does not
require using the /tmp directory (thank you to a student for sharing this approach).

• On the target, create a new user to match your user name on the host. You do not need to set
the password or create a home directory. If your host username is “brian” then:
(bbg)$ sudo adduser --disabled-password --no-create-home brian

• Press ENTER to accept each of the defaults.

• Use su to switch to the new user:
(bbg)$ su brian

• Run your program which crashes
(bbg)$./hello

• Now, when your application crashes it should be able to write a core file to the NFS public
directory (/mnt/remote/). You will still need to have setup the ulimit correctly.

• From the host, check the ownership and permissions on the core file. It should be owned by
your user, and therefore have read-access from the host. If not, use chown to fix.

• Return to being the root on the target:
(bbg)$ exit

9. Troubleshooting

• If gdb-multiarch cannot identify the type of file for the core file, ensure that the following
command can handle the file:
(host)$ readelf -h core

• If gdb-multiarch either crashes with an assert, or is unable to identify the file type of the
core file then check:

• Ensure the core file is not zero bytes. Ensure you are using /tmp directory.

• Ensure gdb-multiarch is not version 7.7. I have tested version 7.8 and 8.1 which work.

• If the core file is 0 bytes, ensure you are in the /tmp/ folder before running your
application, otherwise the core file may not be successfully created.

6. Stripping a Binary
When built with debug information (-g GCC option), the executable can be twice the size. This can
take up too much room on an embedded system, so we may want to strip the version copied to the
target if there is not much room on the target (and don't need it for debugging)..

1. Copy your application (which has debug symbols) to the shared public directory.

2. Check the file size of your application:
(host)$ ls -l helloWorld

3. Change to the public directory, and strip the binary:
(host)$ arm-linux-gnueabihf-strip helloWorld

4. Check the file size of your application; it should be (much?) smaller.
(host)$ ls -l helloWorld

5. Be careful to use the correct version of the file as needed:

• The target can run the stripped version (or the non-stripped version, if space is permitting).

• The host should debug using the non-stripped version. This way you get debug symbols,
while still having a smaller executable on the target.

PDF Created Feb 16, 2021 13/15

7. Valgrind
Valgrind is a utility which allows you to do powerful memory analysis. It can find memory leaks and
other pointer errors.

Install Valgrind on Target

1. Ensure you have internet access from your target. If not, follow the networking guide.
(bbg)$ ping google.ca

2. Install Valgrind on target
(bbg)$ sudo apt-get update
(bbg)$ sudo apt-get install valgrind

3. Note that BBB image version 2018-01-28 (ours!) includes a buggy version of Valgrind:
Valgrind-3.12.0.SVN. We must upgrade it to a newer version:

◦ You should still use apt-get to install valgrind (above) so that most dependencies are met.

◦ On the target, download newer version of Valgrind (command prompt truncated to fit full
command on page):

◦ Try to install the updated packages to check what dependencies are unmet:

If it complains about missing dependencies other than those shown above, install those
dependencies. OK to have incorrect version of libc6, libc6-dbg, valgrind-dbg

PDF Created Feb 16, 2021 14/15

$ mkdir ~/valgrind_update
$ cd ~/valgrind_update
$ wget http://ftp.us.debian.org/debian/pool/main/v/valgrind/valgrind_3.14.0-3_armhf.deb
$ wget http://ftp.us.debian.org/debian/pool/main/v/valgrind/valgrind-dbg_3.14.0-3_armhf.deb

(bbg)$ sudo dpkg -i valgrind*.deb
(Reading database ... 36019 files and directories currently installed.)
Preparing to unpack valgrind_3.14.0-3_armhf.deb ...
Unpacking valgrind (1:3.14.0-3) over (1:3.12.0~svn20160714-1+b1) ...
Preparing to unpack valgrind-dbg_3.14.0-3_armhf.deb ...
Unpacking valgrind-dbg (1:3.14.0-3) over (1:3.12.0~svn20160714-1+b1) ...
dpkg: dependency problems prevent configuration of valgrind:
 valgrind depends on libc6 (>= 2.28); however:
 Version of libc6:armhf on system is 2.24-11+deb9u4.

dpkg: error processing package valgrind (--install):
 dependency problems - leaving unconfigured
dpkg: dependency problems prevent configuration of valgrind-dbg:
 valgrind-dbg depends on valgrind (= 1:3.14.0-3); however:
 Package valgrind is not configured yet.

dpkg: error processing package valgrind-dbg (--install):
 dependency problems - leaving unconfigured
Errors were encountered while processing:
 valgrind
 valgrind-dbg

◦ If the above step is missing no more dependencies than suggested, then force the install of
the updated Valgrind packages, in spite of missing dependencies:

4. Check that Valgrind is working by running it on a simple “hello world” style application or the
like:
(bbg)$ valgrind /mnt/remote/myApps/hello_world

Should exit without error.

5. You may now remove the Valgrind directory:
(bbg)$ cd ~
(bbg)$ rm -rf ./valgrind_update

6. Troubleshooting

◦ You can fully remove Valgrind from the target (either the stock version, or the updated
version) using:
(bbg)$ sudo apt-get purge valgrind valgrind-dbg
(bbg)$ sudo apt-get autoremove

◦ If you run Valgrind and see:
valgrind: m_transtab.c:2459 (vgPlain_init_tt_tc): \

Assertion 'sizeof(TTEntryC) <= 88' failed.

It means you have the incorrect version of Valgrind install; follow directions above to get
newer version.

PDF Created Feb 16, 2021 15/15

(bbg)$ sudo dpkg --force-all -i valgrind*.deb
(Reading database ... 36025 files and directories currently installed.)
Preparing to unpack valgrind_3.14.0-3_armhf.deb ...
Unpacking valgrind (1:3.14.0-3) over (1:3.14.0-3) ...
Preparing to unpack valgrind-dbg_3.14.0-3_armhf.deb ...
Unpacking valgrind-dbg (1:3.14.0-3) over (1:3.14.0-3) ...
dpkg: valgrind: dependency problems, but configuring anyway as you
requested:
 valgrind depends on libc6 (>= 2.28); however:
 Version of libc6:armhf on system is 2.24-11+deb9u4.

Setting up valgrind (1:3.14.0-3) ...
Setting up valgrind-dbg (1:3.14.0-3) ...

	1. Installing gdb-multiarch
	2. GDB
	3. VS Code for Graphical Debugging
	3.1 Makefile in VS Code

	4. Eclipse for Graphical Debugging
	4.1 Eclipse Installation and Project Setup
	4.2 Debugging with Eclipse

	5. Core Dumps
	6. Stripping a Binary
	7. Valgrind

