
A2D Guide
by Brian Fraser
Last update: Jan 28, 2021

This document guides the user through
1. Reading the value of an A2D input on the BeagleBone via the command line terminal.
2. Using a C program to access the A2D.

Target kernels v4.9; no cape manager

Table of Contents
1.  A2D Basics............................................................................................................................................2
2.  Enabling the A2D in Linux...................................................................................................................2
3.  C Code...................................................................................................................................................4

Formatting
1. Commands for the host Linux’s console are show as:

(host)$ echo "Hello PC world!"

2. Commands for the target (BeagleBone) Linux’s console are shown as:
(bbg)$ echo "Hello embedded world!"

3. Almost all commands are case sensitive.

Revision History
• Sept 17, 2019: Changed to support not using the cape manager.
• Jan 28: Changed how prompts are shown



1. A2D Basics
Internally in a computer, values are stored as digital: either on (1) or off (0). In reality, signals are 
analog, which means they are a voltage level and not just on or off. The potentiometer, for examples, is 
a knob the user can turn and generate a voltage between some min and max levels. The Analog to 
Digital converter (A2D or ADC) is used convert an analog signal (such as 1.2V) into a digital number 
in the computer (such as 2731).

The hardware has a limited range of voltages it can tolerate without being damaged. On the 
BeagleBone, this range is 0 to 1.8V. Be very careful not to exceed 1.8V on the input, even though there 
are 3.3V and 5V voltages also on the BeagleBone. On the Zen cape, the potentiometer (POT) has been 
wired to give a value between 0 and 1.8V.

2. Enabling the A2D in Linux
All A2D pins are controlled through Linux, so we must know which pin we want to access.

1. Determine which A2D input channel is being used. On the BeagleBone, the P9 expansion 
headers allow easy access to the 7 analog inputs.

Source: http://beagleboard.org/support/bone101 

• For the Zen cape, the potentiometer is wired to AIN0 (analog input 0)

http://beagleboard.org/support/bone101


2. Change to the sysfs directory for the A2D readings. The sys file system gives access to many 
Linux devices. The folder is /sys/bus/iio/devices/iio:device0 however the ':' must be 
escaped for the Linux command line (but not in your C program!):1

(bbg)$ cd /sys/bus/iio/devices/iio\:device0

3. To read voltage 0:
(bbg)$ cat in_voltage0_raw

• Change the 0 to the desired channel number.

• The value will be between 0 and 4095 (4K – 1)

You can compute the voltage with the formula:
    voltage = (value / max) * reference_voltage

So, if you just read 3103 it relates to the real world voltage of:
    voltage = (3103 / 4095) * 1.8
          = 1.36V

• Tip: If doing this sort of math in C, make sure you use the correct data types to avoid a 
rather unhelpful integer division.

4. Troubleshooting:

• If you are changing the position of the potentiometer but the value being read from 
in_voltage0_raw does not change, ensure the hardware is correctly connected. For 
example, if you are using the Zen cape, ensure it is fully seated on the BBG (virtually none 
of the P8/P9 pins should be visible between the BBG and Zen).

• If the file /sys/bus/iio/devices/iio:device0/in_voltage0_raw does not exist, then 
double check the following in /boot/uEnv.txt:

• Enabled the UBoot overlays:
enable_uboot_overlays=1

• Commented out (with a # in front) the A2D disable command:
#disable_uboot_overlay_adc=1

1 On older kernels, such as early 4.x, the A2D cape must be loaded using the cape manager, with a command such as:
  echo BB-ADC > /sys/devices/platform/bone_capemgr/slots
On the 4.9 kernel, this functionality is done through the UBoot bootloader, with the A2D cape loaded by default. See 
/boot/uEnv.txt for where to configure the device overlays in UBoot.



3. C Code
Assuming the cape is already loaded, the following program will display the current A2D reading and 
the voltage it relates to until the user hits control-c:

// Demo application to read analog input voltage 0 on the BeagleBone
// Assumes ADC cape already loaded by uBoot:

#include <stdlib.h>
#include <stdbool.h>
#include <stdio.h>

#define A2D_FILE_VOLTAGE0  "/sys/bus/iio/devices/iio:device0/in_voltage0_raw"
#define A2D_VOLTAGE_REF_V  1.8
#define A2D_MAX_READING    4095

int getVoltage0Reading()
{

// Open file
FILE *f = fopen(A2D_FILE_VOLTAGE0, "r");
if (!f) {

printf("ERROR: Unable to open voltage input file. Cape loaded?\n");
printf("       Check /boot/uEnv.txt for correct options.\n");
exit(-1);

}

// Get reading
int a2dReading = 0;
int itemsRead = fscanf(f, "%d", &a2dReading);
if (itemsRead <= 0) {

printf("ERROR: Unable to read values from voltage input file.\n");
exit(-1);

}

// Close file
fclose(f);

return a2dReading;
}

int main()
{

while (true) {
int reading = getVoltage0Reading();
double voltage = ((double)reading / A2D_MAX_READING) * A2D_VOLTAGE_REF_V;
printf("Value %5d ==> %5.2fV\n", reading, voltage);

}
return 0;

}

Compile with:
arm-linux-gnueabihf-gcc -std=c99 -D _POSIX_C_SOURCE=200809L potDriver.c -o potDriver


	1. A2D Basics
	2. Enabling the A2D in Linux
	3. C Code

