A2D Guide

by Brian Fraser
Last update: Jan 28, 2021

This document guides the user through
1. Reading the value of an A2D input on the BeagleBone via the command line terminal.
2. Using a C program to access the A2D.

Target kernels v4.9; no cape manager

Table of Contents

Formatting

1. Commands for the host Linux’s console are show as:
(host)$ echo "Hello PC world!"

2. Commands for the target (BeagleBone) Linux’s console are shown as:
(bbg) $ echo "Hello embedded world!"

3. Almost all commands are case sensitive.

Revision History
* Sept 17, 2019: Changed to support not using the cape manager.
* Jan 28: Changed how prompts are shown

1. A2D Basics

Internally in a computer, values are stored as digital: either on (1) or off (0). In reality, signals are
analog, which means they are a voltage level and not just on or off. The potentiometer, for examples, is
a knob the user can turn and generate a voltage between some min and max levels. The Analog to
Digital converter (A2D or ADC) is used convert an analog signal (such as 1.2V) into a digital number
in the computer (such as 2731).

The hardware has a limited range of voltages it can tolerate without being damaged. On the
BeagleBone, this range is 0 to 1.8V. Be very careful not to exceed 1.8V on the input, even though there
are 3.3V and 5V voltages also on the BeagleBone. On the Zen cape, the potentiometer (POT) has been
wired to give a value between 0 and 1.8V.

2. Enabling the A2D in Linux

All A2D pins are controlled through Linux, so we must know which pin we want to access.

1. Determine which A2D input channel is being used. On the BeagleBone, the P9 expansion
headers allow easy access to the 7 analog inputs.

7 analog inputs (1.8V)

Source: http://beagleboard.org/support/bonel101

RS T - B EEERE '
[vDD 3V SN VDD 3ve | GPIO 38 3 4 GPIO 39
IR - - EEEE GPIO 34 5 6 GPIO 35
[Svs 5v RN Svs 5v | GPIO 66 7 8 GPIO 67
BN © o EERESEn GPIO_69 9 10 GPIO_68
GPIO_30 11 12 GPIO_60 GPIO_45 11 12 GPIO_44
GPIO_31 13 14 GPIO_50 GPIO_23 13 14 GPIO_26
GPIO_48 15 16 GPIO_51 GPIO_47 15 16 GPIO_46
GPIO_5 17 18 GPIO_4 GPIO_27 17 18 GPIO_65
[BER-l] GPIO_22 19 20 GPIO_63
GPIO_3 21 22 GPIO_2 GPIO_62 21 22 GPIO_37
GPIO_49 23 24 GPIO_15 GPIO_36 23 24 GPIO_33
GPIO_117 25 26 GPIO_14 GPIO 32 25 26 GPIO_61
GPIO_115 27 28 GPIO_113 GPIO_86 27 28 GPIO_88
GPIO_111 29 30 GPIO_112 GPIO_87 29 30 GPIO_89
GPIO_110 31 [32[VDD_ADC GPIO_10 31 32 GPIO_11
AIN4 | 33 34 | GNDA_ADC GPIO_9 33 34 GPIO_8I1

AING | 35 36 | AINS GPIO_8 35 36 GPIO_80

AIN2 | 37 | 38 | AIN3 GPIO_78 37 38 GPIO_79

AINO | 39 40 | AIN1 GPIO_76 39 40 GPIO_77
GPIO_20 41 42 GPIO_7 GPIO_74 41 42 GPIO_75

| DGND |[EkEEFEFEN DGND | GPIO_72 43 44 GPIO_73
IEERE £ 4 EERE GPIO_70 45 46 GPIO_71

For the Zen cape, the potentiometer is wired to AINO (analog input 0)

http://beagleboard.org/support/bone101

1

2. Change to the sysfs directory for the A2D readings. The sys file system gives access to many
Linux devices. The folderis /sys/bus/iio/devices/iio:device0 however the ":' must be
escaped for the Linux command line (but not in your C program!):*

(bbg)$ cd /sys/bus/iio/devices/iio\:devicel

3. To read voltage 0:
(bbg) $ cat in voltageO raw

* Change the 0 to the desired channel number.
* The value will be between 0 and 4095 (4K — 1)
You can compute the voltage with the formula:
voltage = (value / max) * reference voltage

So, if you just read 3103 it relates to the real world voltage of:

voltage = (3103 / 4095) * 1.8
1.36V

* Tip: If doing this sort of math in C, make sure you use the correct data types to avoid a
rather unhelpful integer division.

4. Troubleshooting:

» If you are changing the position of the potentiometer but the value being read from
in _voltage0_ raw does not change, ensure the hardware is correctly connected. For
example, if you are using the Zen cape, ensure it is fully seated on the BBG (virtually none
of the P8/P9 pins should be visible between the BBG and Zen).

* If the file /sys/bus/iio/devices/iio:device0/in voltage0O raw does not exist, then
double check the following in /boot /uEnv.txt:
* Enabled the UBoot overlays:

enable uboot overlays=1

* Commented out (with a # in front) the A2D disable command:
#disable uboot overlay adc=l1

On older kernels, such as early 4.x, the A2D cape must be loaded using the cape manager, with a command such as:
echo BB-ADC > /sys/devices/platform/bone capemgr/slots

On the 4.9 kernel, this functionality is done through the UBoot bootloader, with the A2D cape loaded by default. See

/boot/uEnv.txt for where to configure the device overlays in UBoot.

3. C Code

Assuming the cape is already loaded, the following program will display the current A2D reading and
the voltage it relates to until the user hits control-c:

// Demo application to read analog input voltage 0 on the BeagleBone
// Assumes ADC cape already loaded by uBoot:

#include <stdlib.h>
#include <stdbool.h>
#include <stdio.h>

#define A2D FILE VOLTAGEO "/sys/bus/iio/devices/iio:device0/in voltageO raw"
#define A2D VOLTAGE REF V 1.8
#define A2D MAX READING 4095

int getVoltageOReading ()
{
// Open file
FILE *f = fopen (A2D FILE VOLTAGEQO, "r");

if (!'f) |
printf ("ERROR: Unable to open voltage input file. Cape loaded?\n");
printf (" Check /boot/uEnv.txt for correct options.\n");
exit(-1);

}

// Get reading

int a2dReading = 0;

int itemsRead = fscanf (f, "%d", &a2dReading);

if (itemsRead <= 0) {
printf ("ERROR: Unable to read values from voltage input file.\n");
exit(-1);

}

// Close file
fclose (f);

return a?dReading;

}

int main ()
{
while (true) {
int reading = getVoltageOReading() ;
double voltage = ((double)reading / A2D MAX READING) * A2D VOLTAGE REF V;
printf ("Value %5d ==> $5.2fV\n", reading, voltage);
}

return O;

Compile with:
arm-linux-gnueabihf-gcc -std=c99 -D POSIX C SOURCE=200809L potDriver.c -o potDriver

	1. A2D Basics
	2. Enabling the A2D in Linux
	3. C Code

