GPIO Guide

by Brian Fraser
Last update: Feb 4, 2021

This document guides the user through:
1. Reading and writing to GPIO on the BeagleBone via the command line terminal.
2. Using a C program to access GPIO.

Table of Contents

AW N
c
wnn
2
=
[0)e]
Q
g
o
=

A1 WEIIHIIZ e eeteeeeeieeee ettt e ettt e e ettt e s ettt e s sas et e e e aabeeeessasseeeseassteesesasseeeessssaeesansaeeeennseeesssnseeeeeeens
4.2 REAAINEG. ...ceutieiiiiiiet ettt ettt et e s it e et e e s bt e st e e bt e s b e e bt e eabe e bt e sabe e bt e sabe e bt e sabeennees
4.3 EdEe TIiGETEM....c.eiieieeieeieeeieetee ettt ettt te st st e et e st e st e e s st e esbeesssesasaesnsseesnssseesnnsseenn
5. USEUl REFEIEIICES......cvviieieeeeiiee ettt ettt ee e eetre e e e tae e e etreeeeteeeeebeeeebeeeeaneeeesseeeeeesssaeeeeeennenens

Formatting:

1. Host (desktop) commands starting with (host) $ are Linux console commands:
(host)$ echo "Hello world"

2. Target (board) commands start with (bbg) $:
(bbg)$ echo "On embedded board"

3. Almost all commands are case sensitive.

Revision History:
e Jan 15, 2021: Initial version for 2021
* Jan 18: Corrected pFFile typo in sample code.
* Jan 20: Removed mention of exporting pins for assignments.
* Jan 25: Corrected table name to P8/P9
* Feb 4: Added info on using GPIO via edge-triggered

1. GPIO Basics

General Purpose Input Output (GPIO) is using digital hardware pins. GPIO allows you to:

1) configure a pin for reading, and then read its state: either on (3.3V) or off (0V), or

2) configure a pin for output, and then drive the pin high (3.3V by writing a 1) to source current,
or low (0OV by writing a 0) to sink current.

A pin is either in input mode, or in output mode, but not both.

For input, since the pin is digital, it cannot tell you the voltage is 1.6V as it only returns 0 or 1. Also, if
a pin is not connected to anything (called floating), it will still read O or 1 (perhaps seemingly
randomly). Some circuits add hardware to pull-up floating inputs to 3.3V, thus always giving a 1 when
floating instead of reading random garbage. Likewise, some circuits use hardware to pull-down the
value to 0 when its floating. Pull-ups or pull-downs are “weak” enough (higher resistance) that when a
real signal is connected to the pin, the pin reads that signal instead of the pull-up/down.

The BeagleBone Green hardware GPIO pins have a very limited ability to source (deliver) current
(6mA"), and sink (accept) current (8mA). If you are trying to drive external hardware, be very careful!

2. Enabling a Pin for GPIO in Linux

All GPIO pins are controlled through Linux. First we must tell Linux that a pin is going to be used for
GPIO (vs any of the other functions it can support).

1. Determine the Linux GPIO number for the pin of interest. On the BeagleBone, the P8 and P9
expansion headers allow easy access, and their Linux GPIO numbers are shown below.

65 possible digital I/Os

1 2

GPIO_38 | 3 | 4 |GPIO_39

GPIO_34 | 5 | 6 |GPIO_35

GPIO_66 | 7 | 8 |GPIO_67

GPIO_69| 9 [10| GPIO_68

GPIO_30 |11 [12| GPIO_60 GPIO_45 |11 [12 | GPlO_44
GPIO_31 |13 [14 | GPIO_50 GPIO_23 | 13|14 | GPIO_26
GPIO_48 | 15| 16 | GPIO_51 GPIO_47 | 15[16 | GPIO_46
GPIO_5[17 |18 GPIO_4 GPIO_27 |17 [18 | GPIO_65
19 20 GPIO_22 | 19 [20 | GPIO_63

GPIO_3 |21 |22 | GPIO_2 GPIO_62 | 21 | 22 | GPIO_37
GPIO_49 | 23 | 24 | GPIO_15 GPIO_36 | 23 | 24 | GPIO_33
GPIO_117 | 25 | 26 | GPIO_14 GPIO_32 | 25 26 | GPIO_61
GPIO_115 |27 28 | GPIO_113 GPIO_86 | 27 | 28 | GP1O_88
GPIO_111 |29 | 30| GPIO_112 GPIO_87 | 29 | 30 | GPIO_89
GPIO_110[31 | 32 GPIO_10 |31 32 |GPIO_11
GPIO_9 |33 | 34 | GPIO_81

35 36 DEEEE GPIO_8 | 35 | 36 | GPIO_80

37 33 BEEEN GPIO_78 |37 | 38 GPIO_79

39 40 GPIO_76 | 39 | 40 | GPIO_77

GPIO_20 |41 42 | GPIO_7 | GPIO_74 |41 |42 | GPIO_75
43 44 GPIO_72 |43 | 44 | GPIO_73

45 46 GPIO_70 | 45 46 | GPIO_71

1 The following pins are limited to sourcing 4mA: P9_19, P9_20, P9_24, P9_26, P9_41, P9_42; no additional restriction

on sinking current. The 3.3V power pins can source up to a total of 250mA.

Source: http://beagleboard.org/support/bonel101

* For the Zen cape, the GPIO signals correspond to the following Linux GPIO numbers:

Zen Cape Signal |Description P8/P9 Pin |Linux GPIO
Number
LED2BL LED 2 blue P9 #11 30
LED2RED LED 2 red P9 #12 60
LEDGRN LED 2 green P9 #13 31
Jsup Joystick Up P8 #14 26
JSRT Joystick Right P8 #15 47
JSDN Joystick Down P8 #16 46
JSLET Joystick Left P8 #18 65
JSPB Joystick Pushed -- A little P8 #17 27
tricky to push straight down.
LightStrip Light-strip header P8 #11 45
DISP_1 Alpha-numeric digit 1 drive | P8 #26 61
DISP 2 Alpha-numeric digit 2 drive | P8 #12 44

* Joystick notes:
* “Left” is towards Ethernet jack on BeagleBone.
* Press reasonably firmly to trigger the joystick; may hear a light click when pressed.
* Joystick pins may read 1 when not pressed, 0 when pressed.

Change to the sysfs directory for GPIO. This file system gives access to many Linux devices:
(bbg) $ ed /sys/class/gpio
Tell Linux to handle the pin as GPIO by writing its “Linux GPIO number” to the export file.
For example, if using LEp2BL (Linux GPIO #30):
(bbg) $ echo 30 > export
* Some pins may already be exported. If already exported this command gives the error:
write error: Device or resource busy
If it fails for this reason, then there is no problem because it is already exported.

» If the BeagleBone has the “universal cape” loaded, it will export most of the available pins
as GPIO. However, when you load another cape (such as the audio cape), then the universal
cape is disabled and you must export the pins you need. Configuring capes is done via
/boot/uEnv.txt, but discussion of this is beyond this guide.

» After exporting a pin, it may take up to about 300ms before the kernel has the pin ready for
use.

. View the /sys/class/gpio/ director; note new directory for gpio30/

* Enter that directory:
(bbg) $ cd gpio30

¢ View files:
(bbg) $ 1s

active low direction edge power/ subsystem@ uevent value

Use the pin (next section).

http://beagleboard.org/support/bone101

. When done using the pin, you can optionally disable GPIO for the pin by writing the Linux

GPIO number to the unexport file. For example, to un-export pin 30:

(bbg) $ ed/sys/class/gpio

(bbg) $ echo 30 > unexport

* If you un-export and then re-export a pin you may need to re-set its direction configuration.
It’s direction may seem to persist; however, you may need to reset it to correct errors.

* Itis OK to leave a pin exported. This is reasonable in an embedded application because it
will generally be doing one thing, and so there is little need to reset it to a default state.
* You cannot un-export pins which were exported by default, such as by the “universal” cape.
Troubleshooting
» If you try to export a pin and receive the error:
write error: Device or resource busy

It may mean that the pin has already been exported, or loaded at startup by a virtual cape.
See if the pin is already mapped as GPIO (find the gpio##/ folder). If present, just use it.

» Ifitis present at boot on your system, realize that it may not be present on all
BeagleBone’s at boot. Especially the TA’s while he/she is marking your assignments.
Therefore, an application which uses these pins should export the pins it needs. If the
export fails, it can be ignored and the program continue as the pin may already be there.

* If you try to unexport a pin and receive the error:

write error: Invalid argument

It may mean that the pin was not exported by the mechanism shown in this guide, but rather

by a virtual cape, such as the universal cape. In this case, you are unable to unexport it

because you never exported it via this mechanism.

* If you do not need the pin for some use other than GPIO, then just leave it as GPIO.

* If you do need to the pin for some use other than GPIO (for example, needing to setup
the pin as a timer or serial port), then you may need to unload the virtual cape and/or
change the boot configuration options for the board. This discussion is outside the scope
of this guide, but is discussed in the Audio guide.

Free GPIO Pins

If you are looking to wire up your own electronics to the BeagleBone, here are some otherwise
unused pins which should not conflict with the operation of the BeagleBone, or the Zen cape:
e P8-7 = Linux #66

e P8-8 = Linux #67

e P8-9 = Linux #69

e P8-10 = Linux #68

e P9-15 = Linux #48

e P9-23 = Linux #49

You can find these numbers via Derek Molloy’s Bealgebone Black P8 (or P9) Header PDFs
mirrored here:
http://exploringbeaglebone.com/wp-content/uploads/resources/BBBP8Header.pdf
http://exploringbeaglebone.com/wp-content/uploads/resources/BBBP9Header.pdf

* Find the pin you want on the left (“Head_pin”), and then lookup Linux’s GPIO pin number
in “GPIO NO.”.

* Note one student had troubles getting his board to boot if he connected things to the
following pins: P8_31, P8_41, P8_43, P8_44.

http://exploringbeaglebone.com/wp-content/uploads/resources/BBBP9Header.pdf
http://exploringbeaglebone.com/wp-content/uploads/resources/BBBP8Header.pdf

3. Using a Pin
1. Read a GPIO pin as input: using gpio26 which is the joystick up on Zen cape:

* Change to its folder:
(bbg) $ ed /sys/class/gpio/gpio26

* Make the pin an input:
(bbg) $ echo in > direction

¢ Read its value:
(bbg) $ cat value

* Each time you read the value file it will return the digital value being read in for that pin.

* You can write a 1 (or 0) to the active 1low file to invert the values you are reading (i.e.,
read 0 when “high” instead of the usual 1).

2. Write to a GPIO pin as output: using gpio30 which is the blue LED on the Zen cape:

* Change to its folder:
(bbg) $ ed /sys/class/gpio/gpio30

* Make the pin an output:
(bbg) $ echo out > direction

* Write a value
(bbg)$ echo 1 > value
or
(bbg) $ echo 0 > value

* The value you write to the value file will be held until you change its value or disable
GPIO. Note that hardware logic can be active low, which means you may need to write a 0
to turn some hardware on.

4. C Code
4.1 Writing

For each of the commands shown in the previous sections which uses echo to write data to a file, you
can use C to do the same thing. Here is an example of echoing “30” to /sys/class/gpio/export:
// Use fopen() to open the file for write access.
FILE *pFile = fopen("/sys/class/gpio/export™, "w");
if (pFile == NULL) {
printf ("ERROR: Unable to open export file.\n");
exit (1) ;
}

// Write to data to the file using fprintf():
fprintf (pFile, "%d", 30);

// Close the file using fclose():
fclose (pFile);

// Call nanosleep() to sleep for ~300ms before use.

When exporting multiple pins, you’ll need to close the file between each export command (one pin at a
time).

4.2 Reading

For each of the commands shown in the previous sections which uses cat to read data from a file, you
can use C to do the same thing. Here is an example of some code reading a pin.

void readFromFileToScreen (char *fileName)

{
FILE *pFile = fopen(fileName, "r");

if (pFile == NULL) {
printf ("ERROR: Unable to open file (%s) for read\n", fileName) ;
exit(-1);

}

// Read string (line)

const int MAX LENGTH = 1024;
char buff [MAX LENGTH];

fgets (buff, MAX LENGTH, pFile);

// Close
fclose (pFile);

printf ("Read: '%s'\n", buff);

4.3 Edge Triggered

It is possible to use the epo11 syscall to have a program block until a GPIO pin changes its value. This
is called being edge-triggered. See the sample code online for edgeTrigger.c example.

For more info, run:
(host)$ man epoll

5. Useful References

1. Walk-through of LEDs via terminal, plus discussion of GPIO.
http://robotic-controls.com/book/export/html/69

2. BeagleBone GPIO
http://www.armhf.com/using-beaglebone-black-gpios/

3. Kernel reference documents for GPIO:

https://www.kernel.org/doc/Documentation/gpio/gpio.txt
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt

https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
https://www.kernel.org/doc/Documentation/gpio/gpio.txt
http://www.armhf.com/using-beaglebone-black-gpios/
http://robotic-controls.com/book/export/html/69

	1. GPIO Basics
	2. Enabling a Pin for GPIO in Linux
	3. Using a Pin
	4. C Code
	4.1 Writing
	4.2 Reading
	4.3 Edge Triggered

	5. Useful References

