CMPT433 How-To Guide
Rendering 2D/ 3D graphics on Zen Hat LCD

Henry Chau, Gabriel Cheng, Sreeja Veeraghanta

1 Main goal

In this guide we will show you how to render graphics with GPU and display it on the
Zen Hat LCD. BeagleY-AI uses ARM Cortex-A53 processor, it has a IMG BXS-4-64
GPU that can accelerate 2D/ 3D graphics. The GPU supports OpenGL ES 3.2 and
Vulkan 1.2 API. In this guide we will be using OpenGL ES.

2 Prerequisite

Follow the improved SPI guide by William Schmidt [1]. The Zen Hat LCD use SPI to
transmit data. The guide allows SPI data to be transmitted much faster (from 1MHz
to 5)0MHz), increasing the display refresh rate.

3 Installation

We need to install Mesa 3D Graphics Library on host and target, it is an implementation
of OpenGL ES.

1. Install the following development packages on host

sudo apt-get install libegll -mesa-dev libgles2-mesa-dev

2. Install the OpenGL ES dynamically linked libraries on target

sudo apt-get install libegll-mesa libgles2-mesa

3. (Optional) If you are using PowerVR SDK, create a symbolic link

sudo 1ln -s /usr/lib/aarch64-linux-gnu/l1ibEGL.so.1
/usr/lib/aarch64-1linux-gnu/libEGL. so



4 Provided files

We provide an LCD HAL and an example to display a triangle. Follow these instructions
to compile and test the program.
On host:

cd triangleDemo
mkdir build

cd build

cmake

cmake --build

On target:

cd /mnt/remote/myApps
sudo ./triangleDemo

5 Configuration and Rendering

In this section, we will show the steps for rendering a triangle on the Zen Hat LCD
screen.
In your CMakeLists.txt, link EGL and GLESv2 to your executable.

target_link_libraries (yourExecutable PUBLIC
..other libraries
EGL
GLESv2
)

Rendering graphics on the Zen Hat LCD requires some workarounds. Since it is con-
nected to the SPI peripheral, the LCD display is not recognized by the Linux OS. If
you try running this command on Linux, it does not return a display device.

modetest -M tidss -c

This means that we cannot use the Linux Graphics Stack [2] for rendering because there
is no default display and window system for us to use. The workaround we came up
with is shown below. We have skipped the shader compilation and uploading of vertex
data to the GPU because they are the same as in regular OpenGL applications. The
full code can be found in the support files. Please refer to the OpenGL Wiki [3] for
definitions of some of the terminologies used below.

1. Create an off-screen pixel buffer surface(display/ platform independent). We used
a EGL extension to create a the display [4]. The configuration have to match the
LCD specification (RGB565, 240x240).

// Initialize EGL
typedef EGLDisplay (*PFNEGLGETPLATFORMDISPLAYEXTPROC) (
EGLenum, void*, const EGLintx*);



PFNEGLGETPLATFORMDISPLAYEXTPROC eglGetPlatformDisplayEXT
= (PFNEGLGETPLATFORMDISPLAYEXTPROC)eglGetProcAddress
("eglGetPlatformDisplayEXT");

EGLDisplay eglDisplay = eglGetPlatformDisplayEXT (
EGL_PLATFORM_SURFACELESS_MESA, EGL_DEFAULT_DISPLAY,
NULL) ;

int major, minor;

eglInitialize (eglDisplay, &major, &minor);

EGLint numConfigs;

EGLConfig eglConfig;

static const EGLint configAttribs[] = {
EGL_SURFACE_TYPE, EGL_PBUFFER_BIT,
EGL_BLUE_SIZE, 5,
EGL_GREEN_SIZE, 6,
EGL_RED_SIZE, 5,
EGL_ALPHA_SIZE, 8,
EGL_DEPTH_SIZE, O,
EGL_RENDERABLE_TYPE, EGL_OPENGL_ES3_BIT,
EGL_NONE

+s

eglChooseConfig(eglDisplay, configAttribs, &eglConfig,

1, &numConfigs);

const EGLint pbufferAttribs[] = {
EGL_WIDTH, 240,
EGL_HEIGHT, 240,
EGL_NONE,
s
EGLSurface eglSurface = eglCreatePbufferSurface(
eglDisplay, eglConfig, pbufferAttribs);
eglBindAPI (EGL_OPENGL_ES_API);

const EGLint contextAttribs[] = {
EGL_CONTEXT_MAJOR_VERSION, 3,
EGL_CONTEXT_MINOR_VERSION, O,
EGL_NONE
s
EGLContext context = eglCreateContext (eglDisplay,
eglConfig, EGL_NO_CONTEXT, contextAttribs);
eglMakeCurrent (eglDisplay, eglSurface, eglSurface,
context) ;

2. Render graphics to the pixel buffer surface

glClearColor (0.0f, 0.5f, 0.5f, 1.0f); // Background
color RGBA

glClear (GL_COLOR_BUFFER_BIT);

glDrawArrays (GL_TRIANGLES, 0, 3);



Use glReadPixels to transfer the frame buffer from GPU memory to client mem-
ory. Notice that we need to use a temporary frame buffer that is double the size
of the actual frame buffer. This is because the underlying frame buffer format
(R8G8B8AS) doesn’t match what we configured in the EGL initialization for un-
known reasons. We have to perform an extra conversion step and move the data
from the temporary frame buffer to the actual frame buffer.

uint8_t *tempFrameBuffer = (uint8_t*)malloc(
LCD_FRAME_BUFFER_SIZE * 2);

GLint colorFormat;

glGetIntegerv (GL_IMPLEMENTATION_COLOR_READ_FORMAT, &
colorFormat) ;

GLint colorType;

glGetIntegerv (GL_IMPLEMENTATION_COLOR_READ_TYPE, &
colorType) ;

glReadPixels (0, 0, LCD_WIDTH, LCD_HEIGHT, colorFormat,
colorType, tempFrameBuffer);

convertRGBA8888toRGB565 (tempFrameBuffer , (uintl6_t *)
LCD_getFrameBuffer (), LCD_WIDTH, LCD_HEIGHT);

3. Send frame to the LCD using SPI.

sendCommand (COMMAND_RAMWR) ;

SPI_sendWords ((uint32_tx*)s_frameBuffer,
LCD_FRAME_BUFFER_SIZE);
You may ignore this warning.
1ibEGL warning: egl: failed to create dri2 screen.

This workaround is not perfect, and there are many areas to optimize. For example,
by default, double buffering does not work for the pixel buffer. The expensive pixel
transfer and conversion operations may also cause a performance hit.

6 Sample output and performance

Figure 1: (a) Static Triangle, (b) Rotating cuboid, (¢) 3D model

(a) and (b) are examples from the supporting files. (c) is an example from the PowerVR
SDK, which is not included in the supporting files. If your setup is correct, you should
see the result on your LCD and have similar performance.

4



Application FPS

No rendering 43.1
Static Triangle 35.7
Rotating cuboid 33.2
3D model 26.3

3D model with animation | 18.9

Table 1: 2D/ 3D Graphics Performance

7 Application development

PowerVR provided an SDK for us to develop graphical applications [5]. It is not re-
quired to use it, but it provides a framework and some useful utilities like font ren-
dering, model loading, and an animation tool. If you want to run their example,
you have to use the same EGL configuration as above and compile with the option
PVR_WINDOW _SYSTEM=NullWS. You may also use some multimedia libraries like
SFML and SDL, but we have not tried them yet, and you still need to use the same
EGL configuration as above.

OpenGL ES is a simpler version of OpenGL, and you can directly use most OpenGL
resources that you find online. The detailed specification can be found online [6]. Here
are some useful resources to learn how to develop OpenGL ES applications [7][8].

8 Troubleshoot

e If your dynamically linked library fails, check if you have the following library
installed.

$ sudo find / —mame ”1ibGLx*"
...<some .so files>
$ sudo find / —mame ”1ibEGLx"
...<some .so files>

e If your GPU somehow does not work, you should check if you have the graphics
driver and kernel modules enabled.

$ sudo find / -name "pvrsrvkmx"
/sys/bus/platform/drivers/pvrsrvknm
/sys/module/pvrsrvkm

/usr/lib/modules/6.1.83-ti-arm64-r63/extra/j722s/pvrsrvkm.ko
/usr/lib/modules/6.1.83-ti-arm64-r65/extra/j722s/pvrsrvkm. ko
/usr/lib/modules/6.1.83-ti-arm64-r68/extra/j722s/pvrsrvkm. ko

OpenGL functions may fail silently; failure doesn’t terminate the program. You
have to use glGetError or eglGetError to know whether an error happened prior.



References

[1] Improved SPI guide
https://github.com/wcs3/BYAI-mcu_spil

[2] Linux graphics stacks slides by bootlin
https://bootlin.com/doc/training/graphics/graphics-slides.pdf

[3] OpenGL Wiki
https://www.khronos.org/opengl/wiki/

[4] EGL surfaceless extension
https://registry.khronos.org/EGL/extensions/MESA/EGL_MESA_platform_
surfaceless.txt

[5] PowerVR SDK
https://docs.imgtec.com/sdk-documentation/html/introduction.html

[6] OpenGL ES 3.0.6 specification
https://registry.khronos.org/0OpenGL/specs/es/3.0/es_spec_3.0.pdf

[7] OpenGL ES 3.0 Quick Reference Card
https://www.khronos.org/files/opengles3-quick-reference-card.pdf

[8] OpenGL ES 3.0 Programming Guide
https://books.google.ca/books/about/OpenGL_ES_3_0_Programming_Guide.
html7id=7qTOAgAAQBAJ


https://github.com/wcs3/BYAI-mcu_spi0
https://bootlin.com/doc/training/graphics/graphics-slides.pdf
https://www.khronos.org/opengl/wiki/
https://registry.khronos.org/EGL/extensions/MESA/EGL_MESA_platform_surfaceless.txt
https://registry.khronos.org/EGL/extensions/MESA/EGL_MESA_platform_surfaceless.txt
https://docs.imgtec.com/sdk-documentation/html/introduction.html
https://registry.khronos.org/OpenGL/specs/es/3.0/es_spec_3.0.pdf
https://www.khronos.org/files/opengles3-quick-reference-card.pdf
https://books.google.ca/books/about/OpenGL_ES_3_0_Programming_Guide.html?id=7qT0AgAAQBAJ
https://books.google.ca/books/about/OpenGL_ES_3_0_Programming_Guide.html?id=7qT0AgAAQBAJ

	Main goal
	Prerequisite
	Installation
	Provided files
	Configuration and Rendering
	Sample output and performance
	Application development
	Troubleshoot

