Using SPI to Drive an MFRC522 RFID Reader

Spencer Leslie, Louie Lu, Jet Simon

April 2024

Contents
1 Introduction 2
2 SPI 2
2.1 OVEIVIEW . . o v v vt e e e e e e e e e e e e e e e e e e 2
2.2 Configuring SPI on the BeagleBone 2
2.3 Working with SPTin C e e 4
2.3.1 Imitialization Lo e e e e 5
2.3.2 Reading and Writing Registers L o oo 5
2.4 Support Files e e e e e e e 6
2.5 Troubleshooting L L e e e e e e 6
3 RFID 8
3.1 Overview e e e e e e 8
3.2 MF1S503x, aka the MIFARE Classic 1K 8
321 The UID e e e 8
3.22 Commands oL e e e e e e e 9
3.3 MFROCB22 . . . o e e e e e e 9
3.3.1 The FIFO Buffer e 9
3.3.2 Commands, Part IL. 10
3.3.3 Registers oL e e e e 10
3.3.4 Formatting a Register Address e 11
3.3.5 Wiring to the BeagleBone 12
3.4 Working with RFID in C e e e e e 12
3.4.1 Writing a Command to the FIFO Buffer 13
3.4.2 Executing a Transceive e e e e e e 13
3.4.3 Checking for Errors oL 14
3.4.4 Reading a Tag’s Response from the FIFO Buffer 15
3.5 Obtaining a UID e e e 16
3.6 Support Files e 16
3.7 Troubleshooting L . e 16
4 Appendix 18

1 Introduction

This guide will walk you through how to use SPI to drive an MFRC522 (also sometimes labelled as RC522)
RFID Reader. Section 2 gives a brief overview on the SPI protocol, and shows how to configure SPI on
the BeagleBone. Section 3 explains the technologies behind RFID, and demonstrates the steps necessary
to obtain the UID (unique ID) of an RFID tag. Please know that while this is a lengthy guide, we have
designed the article to be beginner-friendly. Support files for SPIT and RFID modules are included alongside
this guide, but their implementations are only half-complete.

We wrote this two-in-one guide because we found that other student guides for SPI, while helpful, contain
some crucial inaccuracies as of the time of writing. Section 2 of our guide can be considered an update to
those documents. As for RFID, beginner resources are very scarce. Most Internet guides hand-wave away
the technical details, simply encouraging direct use of popular premade libraries which are not immediately
compatible with the BeagleBone. We hope that by reading this guide, you can not only get your RFID
reader to work for this class’s hardware, but also gain an appreciation for what is going on under the hood.

2 SPI

2.1 Overview

To drive the MFRC522 RFID reader, we will be using a protocol we have not yet seen in this class - SPI
(Serial Peripheral Interface). While it might be possible to use 12C or UART to drive the MFRC522, we will
not be covering them here. Based on our findings, the MFRC522 is primarily intended to be used with SPI.

It is useful to frame our introduction of SPI in terms of an already familiar protocol: 12C. Like 12C, SPI
employs a synchronous, master-slave architecture. The master is the BeagleBone, and the slave is an SPI
device, i.e. our RFID reader. The main difference between the two protocols is that 12C uses just one signal
line to exchange data - SDA (Serial Data), while SPI uses two - MOSI (Master Out Slave In) and MISO
(Master In Slave Out).

Practically speaking, there is just one important quirk you must know about SPI: there is a one-byte
delay between the two signal lines, MOSI and MISO. This one-byte delay is responsible for some slightly
unintuitive code, which we will see in a later section. For now, this concludes the information we need to
know about the protocol itself. The next section shows you how to set up SPI on the BeagleBone.

2.2 Configuring SPI on the BeagleBone

There are two SPI buses on the BeagleBone, labeled SPI0 and SPI1. Below is a table showing the two buses
and their pin mappings. Note that you have two options for CS (Chip Select) when using SPI1.

Please note that if you elect to use SP10, you will cannibalize the 12C1 bus, which controls the 14-seg display
and the accelerometer. If you elect to use SPI1, you will cannibalize HDMI video and audio capabilities.
Consult the P9 Header table for more information. For this guide, we will proceed with SPI1, CS0.

https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/guides/files/bbg_docs/BeagleboneBlackP9HeaderTable.pdf

Table 1: SPI Buses on the BeagleBone

Bus

Linux Device Filepath

Pins

SPIO0

/dev/spidev0.0

CS:

SCLK:
MOSI:
MISO:

P9_17 (SPI0_CS0)
P9_22 (SPI0_SCLK)
P9_18 (SPI0_D1)
P9_22 (SPI0_DO)

SPI1, CSO

/dev/spidev1.0

CS:

SCLK:
MOSI:
MISO:

P9_31 (SPI1_SCLK)
P9_30 (SPI1_D1)
P9_29 (SPI1.DO)

SPI1, CS1

/dev/spidevl.1

CS:

(
(
(
(
P9_28 (SPI1.CS0)
(
(
(
(

P9_42 (SPI1_CS1)

Regardless of which bus you choose, SPI is disabled by default on the BeagleBone.

following steps to enable SPI:

We must take the

1. Explicitly load the custom SPI cape in order for the kernel to recognize that hardware:

e Check that your SPI device tree overlay exists at /lib/firmware. They should be there by default.
(bbg)$ 1s | grep -r "SPIDEV" /lib/firmware

grep: /lib/firmware/BB-SPIDEV1-00A0.dtbo: binary file matches
grep: /lib/firmware/BB-SPIDEV0-00A0.dtbo: binary file matches

e Enable the SPI device tree overlay through U-Boot.
(bbg)$ sudo nano /boot/uEnv.txt

Look for the header:

#+#4# Additional custom capes

Then add the following line:

uboot_overlay_addr5=/lib/firmware/BB-SPIDEV1-00A0.dtbo

e Disable any capes that would compete with your selected SPI cape. For SPI1, that means disabling
the HDMI video and audio capes.

Look for the header:

###Disable auto loading of virtual capes (emmc/video/wireless/adc)

Then uncomment the following lines:

disable_uboot_overlay_video=1
disable_uboot_overlay_audio=1

use for SPI1
use for SPIO

2. (Optional) By default, the SPIDEV files are owned by root. Normally, you would have to use sudo to
run a program that uses SPI. To bypass this, you can use this simple quick fix:

e Create a udev rule that assigns a user group to the SPIDEV file.

(bbg)$ sudo nano /etc/udev/rules.d
Change the file to contain exactly the following;:

KERNEL=="*spidev*”, GROUP=*“spiusr”, MODE=%“0660"
e Add the spiusr group.

(bbg)$ sudo groupadd spiusr
e Add the debian user to the spiusr group.

(bbg)$ sudo gpasswd -a debian spiusr

3. Reboot for the changes to take effect, then SSH back in.
(bbg)$ sudo reboot

4. Confirm the changes.

e Verify that the spidev driver was loaded.
(bbg)$ 1s -al /dev/spidevl.O

crw-rw---- 1 root spiusr 153, 2 Mar 11 23:43 /dev/spidev1.0

e Confirm the pins have been configured for SPI. Note that we should not have to run any config-pins
commands ourselves; loading the device tree overlay automatically configures them for us.

(bbg)$ show-pins

P9.31 / hdmi audio clk spi 1 clk
P9.29 / hdmi audio fs spi 1 dO miso

P9.30 spi 1 dl mosi
P9.28 / hdmi audio data spi 1 cs 0

Figure 1: show-pins confirms that SPI1 is ready to go

2.3 Working with SPI in C

Linux has its own SPI module <linux/spi/spidev.h> which abstracts away many of the finer details for
us. We will take full advantage of this module to drive our SPI device. Below, we show the code to initialize,
and then communicate over, SPI. You may notice that this code is nearly identical to working with 12C.

Error checking has been omitted for brevity.

2.3.1 Initialization

To initialize a SPI bus, first open the bus via its filepath (see Table 1), and obtain its file descriptor.

#include <linux/spi/spidev.h>
#define SPI DEV BUS1.CSO "/dev/spidevl.0"

int spiFileDesc = open(SPI_DEV_BUS1_CSO, O_RDWR);

Then, set the SPI mode to DEFAULT (0) using ioctl. ioctl is a Linux system call which handles device-
specific file I/O. We use ioctl in conjunction with our file descriptor to perform actions on our SPI device.

#define SPI_MODE_DEFAULT O

int spiMode = SPI_MODE_DEFAULT;
ioctl(spiFileDesc, SPI_IOC_WR_MODE, &spiMode) ;

Lastly, set the max speed of the SPI device. Ideally, this should match the SPI device you are working with.
The below value worked for our RFID application, so we recommend sticking with it.

#define SPEED_HZ _DEFAULT 4000000

int speedHz = SPEED_HZ_DEFAULT;
ioctl(spiFileDesc, SPI_IOC_WR_MODE, &speedHz);

2.3.2 Reading and Writing Registers

Much like I2C, working with SPI is a matter of reading and writing registers of the slave device. To read a
register, we must first create an SPI transfer struct, which is defined in the Linux SPI module. Ensure that
this struct does not contain any unexpected values by immediately memsetting its values to 0.

struct spi_ioc_transfer spiTransaction;

memset (&spiTransaction, 0, sizeof (struct spi_ioc_transfer));

This struct has three fields we are concerned with: tx_buf, rx_buf, and len.

tx_buf is the transmit (i.e. send) buffer, and uses the MOSI (Master Out Slave In) line. We fill this buffer
with what we want to communicate to the SPI device. At a minimum, tx_buf should contain the register
address of the SPI device that you want to access. If you are writing a register, you should also fill tx_buf
with the actual value you want to write to the register.

Conversely, rx_buf is the receive buffer, and uses the MISO (Master In Slave Out) line. After the SPI
transaction is complete, rx_buf will contain the SPI device’s response. This generally means that rx_buf will
contain the register’s content. Please note that you only need to fill rx_buf if you are reading a register.

The following sample code shows how to fill an SPI transfer struct if intending to read a register.

#define SPI_BUFF_SIZE 2

// Create buffers to pass in to the SPI struct.
myTxBuf [SPI BUFF_SIZE] = { regAddrToRead, O };
myRxBuf [SPI_BUFF_SIZE] = { 0, 0 }; // arbitrary init

// Set the 3 SPI struct fields, typecasting the buffers to match Linux’s struct spec.
spiTransaction.tx_buf = (unsigned long)myTxBuf;
spiTransaction.rx_buf = (unsigned long)myRxBuf;

spiTransaction.len = SPI_BUFF_SIZE;

After filling the struct with our buffers, we call upon the trusty ioctl to perform the data transfer. We pass
in the SPI file descriptor, the filled SPI transfer struct, as well as a macro defined in the Linux SPI module
(SPI_IOC_MESSAGE(1)) that specifies to initiate the transaction. The 1 that we pass into the macro defines
how many transfers to perform. While it is possible to perform multiple transfers in just one ioctl call, it is
simpler to keep each register I/O operation as a separate call.

ioctl(spiFileDesc, SPI_IOC_MESSAGE(1), &spiTransaction);

Upon completion, rxBuf should contain the content of the register address we accessed. However, printing
rxBuf[0] reveals a result of 0. What’s going on? Did the transaction not occur?

Recall the one quirk we need to know about SPI: that MOSI and MISO share a one-byte delay. We stored
regAddrToRead in myTxBuf[0], which uses the MOSI line. Therefore, myRxBuf, which uses the MISO line,
stores the result in myRxBuf[1]. This also explains why we define our buffer size to be 2, instead of 1: we
need that one extra space to store the result.

retu 0]; // returns a garbage value

return rxBuf[1]; // returns the register’s content

2.4 Support Files

In the support files accompanying this guide, you will find a half-complete SPI implementation in spi.h and
spi.c. What you have seen in this guide - initialization and reading a register - is filled in for you. However,
the code to write a register is missing. We encourage you to pause this guide now, work through the module,
and implement the missing function. A working SPI implementation will be required for the RFID section.

Hint: Writing a register is very similar to reading a register, but carefully consider which of the 3 SPI
transfer struct fields you actually need to fill!

2.5 Troubleshooting

e If you try to run a program that uses SPI and you receive an error similar to:

(bbg)$ Spi_init open: No such file or directory

then this means that the SPI device tree overlay has not been loaded. First, run through the steps in
Section 2.2 again carefully. If the same error persists, and you have included BB-BONE-AUDI-02-00A0.dtbo
as a part of doing the Beat-Box assignment, you can try commenting that out and rebooting. We
had conflicting reports on whether that particular audio overlay competes with SPI or not. Ad-
ditionally, ensure that you have not tampered with other options in uEnv.txt. For example, en-
able_uboot_cape_universal=1 should be uncommented by default.

If you have successfully loaded the SPI device tree overlay but show-pins is not listing the pins as
configured for SPI, you can try manually configuring the pins:

(bbg)$ sudo config-pin p9.28 spi_cs
(bbg)$ sudo config-pin p9.29 spi
(bbg)$ sudo config-pin p9.30 spi
(bbg)$ sudo config-pin p9.31 spi_sclk

If you are receiving permission errors, remember that running a program that uses SPI requires sudo
by default. Follow the optional step in Section 2.2 if you wish to obviate this requirement.

3 RFID

3.1 Overview

RFID (radio-frequency identification) consists of two parts: a reader, and a tag. In official documentation,
these parts are more commonly referred to as the PCD (proximity coupling device), and the PICC (proximity
integrated circuit card). In this guide, we will proceed with the more familiar terms, reader and tag. The
particular models we are working with are the MFRC522 reader, and the MF1S503x (also known as MIFARE
CLASSIC 1K) tag. The standard kit comes with two tags: a white card, and a blue key fob. Despite their
difference in shape and size, these are both MIFARE CLASSIC 1K tags.

The point of RFID is simple: to transmit data between the reader and the tag.

Data exchange between a reader and a tag occurs through radio waves. The reader initiates communication
by broadcasting a radio wave which carries a command. If a tag is in range of the radio wave, the tag is
powered up. Based on the command it receives, the tag then sends back its own radio wave containing some
data. Most commonly, the reader commands a tag to return its UID (unique ID). The UID can be checked
against a list of UIDs to permit or deny entrance to an apartment building, for example.

Noise is crucial to consider when working with RFID. There are many factors that can lead to an incorrect
exchange of data. For example, holding a tag too briefly next to the reader will very often result in an
incomplete transmission. External electromagnetic interference can corrupt the data. The clock timings of
the devices could be mismatched. With so many things that could go wrong, we will need to implement
ways to validate the data we receive. We stress that error checking with RFID is not an optional step.

In summary, as the programmer, our primary jobs when working with RFID are to:

(a) specify which commands the reader should send to the tag, and when to send them, and

(b) validate the responses from the tag.

Let us take a closer look at the two individual RFID parts.

3.2 MF1S503x, aka the MIFARE Classic 1K
3.2.1 The UID

The tag stores 1024 bytes of memory (hence “1K” in the name MIFARE Classic 1K), organized into blocks.
It is possible to read and write any of these blocks with any data you wish, but doing so requires extra steps
- including MIFARE Authentication - and is beyond the scope of this guide. We are just here for the UID.
To obtain a tag’s UID, we merely require the special read-only block known as the Manufacturer Block.
This is the only block in memory that does not require elevated MIFARE Authentication to access.

The UID is 4 bytes long. It was “hard-coded” during production, and cannot be overwritten. While not
actually guaranteed to be unique, this UID is, probabilistically speaking, extremely likely to be sufficient
to identify tags from one another. Because of this technicality, you may see the UID described in official
documentation as the NUID (non-unique ID). Do not be confused: UID and NUID are the same thing.

The byte that comes immediately after the UID in memory is the BCC (Block Check Character). This
5th byte was hard-coded during production to be equal to the exclusive OR, over the UID’s 4 bytes. Whenever

we send out a command to retrieve the UID, the BCC always comes along for the ride, so we receive 5 bytes
in total. As part of our data validation policy, we will use the BCC to confirm whether or not a transmitted
(read: potentially noisy!) UID matches the actual, intended UID.

3.2.2 Commands

As a reminder, the RFID reader broadcasts a command to initialize communication with a tag. If a tag is
in range, it accepts the command and responds to the reader accordingly. To relinquish its UID, a tag must
receive the following two commands from the reader, in order, one after the other:

Table 2: Required Commands to Obtain a UID

Reader sends... Command Code | Meaning Tag responds with...
1. REQA 0x26 (7-bit)* search for a tag ATQA (0x04 0x00)
2. ANTICOLLISION | 0x93 0x20 retrieve UID of a found tag | UID + BCC

There are a few things worth pointing out from this table.

(a) REQA stands for Request A. This command’s purpose is to probe for, and select, a single tag. The
ANTICOLLISION command has a distinctly irrelevant name in relation to its function. Do not be
confused: ANTICOLLISION means nothing more than “GIVE ME YOUR UID”.

(b) The term “command” may have been a little abstract up until now, but we see now that a command
is nothing more than a particular byte (or two). There are some peculiarities, however. Note that
REQA’s command code is mysteriously labelled 7-bit. The ANTICOLLISION command code has no
such label, but is comprised of two bytes instead of one. Just be aware of these oddities for now; we
will revisit how to deal with them when we start writing the code to send out these commands.

(¢c) ATQA stands for Answer to Request A. It is simply an arbitrary 2-byte code that the manufacturers
decided the tag should return when receiving a REQA command. It should always consist of the two
bytes 0x04 and 0x00. Just like with the UID and BCC, we should check, as part of our data validation
policy, that we receive this precise sequence of bytes after sending out a REQA command.

3.3 MFRC522

From the previous section, we learned which commands to send to a tag, and when to send them, in order
to obtain its UID. Now we will see how to send these commands from the MFRC522 reader to the tag.

3.3.1 The FIFO Buffer

The MFRC522 has a 64-byte, bi-directional buffer known as the FIFO Buffer, which is used to communicate
between the reader and a tag. The purpose of this buffer is to transceive, which is a portmanteau of transmit
(i.e. send), and receive. The FIFO Buffer first transmits a command code, then receives a tag’s response.
The FIFO Buffer does not constantly transceive. It only transceives a single time when we instruct it to.

Note that we never interface with the tag directly. Anything we, the programmer, wish to do with the tag,
we must do through the reader’s FIFO Buffer. The procedure we follow is:

(a) lodge a command code into the FIFO Buffer,
(b) demand the reader to transceive (which sends our command code and receives a response),

(c) retrieve (and validate!) the tag’s response from the FIFO Buffer.

We can accomplish all of these tasks by reading and writing specific registers on the MFRC522. We will
explore these registers very soon. But first: how do we instruct the reader to transceive?

3.3.2 Commands, Part IT

The MFRC522 has its own set of command codes, separate from the commands we have thus far been
familiarized with. REQA and ANTICOLLISION are commands to be lodged into the FIFO Buffer, then
sent from the reader, and finally accepted by the tag.

On the other hand, a TRANSCEIVE command is meant to be sent from wus, the programmer, and accepted
by the reader. The table below shows two commands that we, the programmer, need to send to the reader.
The tag makes no contact at all with these commands.

Table 3: Relevant MFRC522 Commands

We execute... | Command Code | Meaning

IDLE 0x00 cancel the current (transceive) command
TRANSCEIVE | 0x0C transmit and receive from the FIFO Buffer

The purpose of the TRANSCEIVE command should be self-evident. But to understand the IDLE command,
we must reiterate that one TRANSCEIVE command equals just one radio wave being sent out - not a constant
stream of waves. The purpose of the IDLE command is to reset the reader’s register states in preparation
for another TRANSCEIVE command.

We mentioned before that commands should be lodged into the FIFO Buffer. But remember - those are
commands intended for the tag, not the reader. The TRANSCEIVE command has a different home: a
particular register on the MFRC522 known as the CommandReg register.

3.3.3 Registers

If you have worked with the Zen Cape’s accelerometer (Assignment 3), then you have some experience with
combing through a device datasheet and parsing its registers. The MFRC522 is no different. It has its own
datasheet, and Section 9.2 of the datasheet gives an overview of all its available registers. Each register is one
byte (8 bits) long, and each bit - or group of bits - represents some function, as described in the datasheet.

Below is a table of the bare minimum registers that you must interface with to obtain a UID. The accom-
panying support files reveal what values we personally chose to write to each of these registers, and briefly
explain our chosen values through comments. If you are still confused by any value, we encourage you to
pull up the datasheet alongside your favourite hex-to-binary converter, and decode the meanings bit by bit.

10

https://www.nxp.com/docs/en/data-sheet/MFRC522.pdf
https://www.nxp.com/docs/en/data-sheet/MFRC522.pdf

Table 4: Relevant MFRC522 registers, sorted by function

Address (hex) | Register Name | Function

01h CommandReg starts and stops command execution
0Dh BitFramingReg adjusts bit orientation for commands
04h ComlIrqReg detects the reception of data from a tag
06h ErrorReg detects errors from the last command
0Ch ControlReg detects invalid data bits

09h FIFODataReg stores contents of the FIFO Buffer

0Ah FIFOLevelReg number of bytes stored in the FIFO Buffer
011h ModeReg (one-time) sets mode for transmitting
014h TxControlReg (one-time) turns RFID antenna on
015h TxASKReg (one-time) turns RFID 100% ASK on

From the first row of the table, we find the CommandReg that we mentioned in the previous section. So
to execute a TRANSCEIVE command, we would write the TRANSCEIVE command code (0x0C) to the
CommandReg register (0x01). Right? Well... not quite.

3.3.4 Formatting a Register Address

The MFRC522 would not accept 0x01 (0000 0001) as a valid register address. From the datasheet, we see
that the MFRC522 demands that register addresses be formatted a certain way when requesting access:

Table 8. Address byte 0 register; address MOSI

7(MSB) |6 5 4 3 2 1 0 (LSB)
1 =read address 0
0 = write

Figure 2: Section 8.1.2.3 of MFRC522 datasheet

To be explicit:

e the MSB must be 1 if you intend to read, and 0 if you intend to write, a register.
e the actual register address you are trying to access should be condensed into the middle 6 bits.

e the LSB must always be 0 (which 0000 0001 violates).

To avoid confusion:

e only register addresses must be formatted in this manner. Values that you wish to write to the
register, such as command codes, should not be changed.

11

To format a register address, we use bitwise operations. For example, if we want to read the VersionReg
register (0x37), which tells us the firmware version of the MFRC522 model we have, we can use a combination
of bit shifting (<<) and an OR bitmask (|).

Table 5: Bitwise operations on VersionReg 0x37

Binary Operation | Explanation

0011 0111 | - starting value 0x37

0110 1110 | << 1 shifts all bits left one position

1110 1110 | | 0x80 changes MSB to 1, while preserving all other bits

Notice that the final result conforms with the demands of Figure 2. The MSB is 1 because we are intending
to read. The middle bits represent the actual address, 0x37. Lastly, the LSB is 0. Practically speak-
ing, it is useful to create a helper function that formats the addresses for us. You will see this function,
Rfid formatRegAddr, in the support files.

3.3.5 Wiring to the BeagleBone

We have now covered all the background knowledge required to work with our MFRC522 reader. It’s time
to wire it up and start coding! The input voltage of the MFRC522 is 3.3V, which is a perfect match for the
BeagleBone. We do not need any resistors, but we do need quite a few wires - six, to be exact. We can omit
IRQ (interrupt request) and RST (reset). The following table shows the pin mappings for SPI1, CSO.

Table 6: SPI1 MFRC522 Pin Mappings

MFRC522 Pin | BeagleBone Pin
SDA P9.28

SCK P9.31

MOSI P9.30

MISO P9.29

GND P9.1/P9.2

3V3 P9.3/P9.4

3.4 Working with RFID in C

In this section, we walk through sample code to lodge a REQA command into the FIFO Buffer, execute a
TRANSCEIVE command, and receive an ATQA from a tag. This is a high-level overview, so some details
have been omitted. You may find the comprehensive version in the accompanying support files.

You will see in this section that “working with RFID” is truly nothing more than reading and writing the
appropriate registers. Most of the code itself should look almost trivially simple. Cheer up! You have already
taken care of the hard part by understanding the inner workings of the reader and the tag.

12

3.4.1 Writing a Command to the FIFO Buffer
To lodge the REQA command code (0x26) into the FIFO Buffer, we must write the value 0x26 to the
FIFODataReg register (0x09), which provides access to the FIFO Buffer. Assume we have a working function

Rfid writeReg that first properly formats, and then writes a value to, an MFRC522 register over SPI:

typedef uint8_t byte;

Rfid writeReg(byte regAddr, byte value) {
byte formattedRegAddr = Rfid _formatRegAddr (regAddr);
Spi_writeReg(formattedRegAddr, value);

In theory, the code to lodge the REQA command into the FIFO Buffer should be as simple as:

#define FIFO_DATA_REG 0x09
#define REQA_CMD 0x26

Rfid writeReg(FIFO_DATA REG, REQA_CMD);

However, recall from Table 2 that REQA is a (7-bit)* command. We must first notify the reader to process
only 7 bits of the full byte we feed it. We do this by setting the BitFramingReg register (0x0D) to 7.

#define BIT_FRAMING_REG 0xOD

Rfid_writeReg(BIT_FRAMING REG, 0x07) ;
Rfid writeReg(FIFO_DATA REG, REQA_CMD);

And just like that, the FIFO Buffer is now ready for transceiving.

3.4.2 Executing a Transceive

Once we have lodged the REQA command into the FIFO Buffer, we want to make the reader transceive.
Recall that we can achieve this by writing the TRANSCEIVE command to the CommandReg register (0x01).

#define COMMAND_REG 0x01
#define TRANSCEIVE_CMD 0x0C

Rfid_writeReg(COMMAND_REG, TRANSCEIVE_CMD);

However, this is not quite enough. It turns out the TRANSCEIVE command has a unique property. It
requires a write to another, separate register to *actually™ begin transceiving. We are already familiar with
this register from the previous step - the BitFramingReg register. We used its lower bits to define the bit
orientation as 7. Its MSB, however, has a completely different function; when turned to 1, it triggers the
true execution of the TRANSCEIVE command.

13

#define COMMAND_REG 0xO1
#define TRANSCEIVE_CMD 0xO0C

Rfid_writeReg (COMMAND_REG, TRANSCEIVE_CMD);
Rfid_setBitmask (BIT_FRAMING_REG, 0x80) ; // begin transceiving for real!

Do not worry about the implementation of Rfid_setBitmask, as that is done for you in the support files.
Just understand its function: it sets the MSB of BitFramingReg to 1 with the bitmask 0x80 (1000 0000),
while keeping all other bits the same. This is important, because we still want the bit orientation to be 7.

After the MSB of BitFramingReg is set to 1, the reader will transmit the REQA command from the FIFO
Buffer through its antenna as a physical radio wave. If a tag picks up the signal, the tag will send back an
ATQA. The ATQA is then picked up through the reader’s receiver, and stored in the FIFO Buffer.

3.4.3 Checking for Errors

Recall that RFID is sensitive to data transmission errors, and one of our most important jobs as the pro-
grammer is to perform data validation to ensure that the ATQA has been transmitted successfully.

We can detect RFID errors at different layers. The first layer detects errors before you even read the tag’s
response from the FIFO Buffer. The MFRC522 internally records some error reports in certain registers:
ErrorReg, and ControlReg. Immediately following a TRANSCEIVE command, we should read those registers
and check if any errors were detected.

#define ERROR_REG 0x06
#define CONTROL_REG 0xOC

byte errorRegValue = Rfid_readReg(ERROR_REG) ;
byte controlRegValue = Rfid_readReg(CONTROL_REG) ;

Using the datasheet to understand what each bit of the error registers represents, we devise a bitmask
that screens for those pertinent bits. We perform the AND bitwise operation on the register value and the
bitmask. If we receive a non-zero value, that means an error has occurred. We return an appropriate enum
error code for debugging purposes.

#define ERROR_REG_BITMASK 0x13 // screens for miscellaneous errors
#define CONTROL_REG_BITMASK 0x07 // screens for "invalid bit" errors

if (errorRegValue & ERROR_REG_BITMASK) {
return RFID_MISC_ERR;

}

if (controlRegValue & CONTROL_REG_BITMASK) {
return RFID_INVALID BYTE_ERR;

14

The second layer of error checking occurs after reading the tag’s response from the FIFO Buffer. This layer’s
job is to confirm that the tag’s response is indeed the exact sequence of bytes we are expecting. Literally
speaking, after you read the ATQA from the FIFO buffer, you should explicitly:

(a) check the length of the response (reject if not precisely 2 bytes (16 bits)),

(b) check the content of the response (reject if not precisely (0x04, 0x00)).

3.4.4 Reading a Tag’s Response from the FIFO Buffer

To read from the FIFO Buffer, we use the same register we used to write to the FIFO Buffer: FIFODataReg.

Internally, the FIFO Buffer keeps track of a pointer. Each time one byte is read from the FIFO Buffer,
the pointer automatically moves to the next byte. Therefore, we do not have to worry about which address
location of the FIFO Buffer to read from. We simply read the register n times, where n is equal to the
number of bytes we have received. Between each byte being read, the pointer updates accordingly for us.

We can determine how many times to read from the FIFO Buffer by reading the FIFOLevelReg register
(0x0A), which tells us how many bytes the FIFO Buffer is currently holding.

#define FIFO_LEVEL_REG 0xOA
#define FIFO_DATA_REG 0x09

byte numFIFOBytes = Rfid_readReg (FIFO_LEVEL_REG) ; // an ATQA would return 2 bytes

for (int i = 0; i < numFIFOBytes; i++) {

tagResponse[i] = Rfid _readReg(FIFO_DATA REG);

// tagResponse contains: [0x04, 0x00]

Congratulations! You have successfully sent a REQA command to a tag, and received an ATQA.

15

3.5 Obtaining a UID

To recap: in order to obtain a tag’s UID, the following steps must occur. (Error checking has been omitted
for clarity, but should be performed wherever possible.)

1. We, the programmer, lodge the REQA command into the reader’s FIFO Buffer.

2. We, the programmer, execute the TRANSCEIVE command.

3. The reader transmits the REQA command, probing for tags within range.

4. A tag receives the command. It sends an ATQA back to the reader, signalling that it is ready to
receive a UID request.

5. We, the programmer, lodge the ANTICOLLISION command into the FIFO Buffer.

6. We, the programmer, execute the TRANSCEIVE command.

7. The reader transmits the ANTICOLLISION command to the selected tag.

8. The selected tag receives the command. It sends its 4-byte UID, and its BCC, back to the reader.

9. We, the programmer, retrieve the UID and BCC from the FIFO Buffer.

3.6 Support Files

In the support files accompanying this guide, you will find a half-complete RFID implementation in main.c,
rfid.h, and rfid.c. These files build off of the SPI code from Section 2, so you must complete that module
first, if you have not already. You should read these files in the order: rfid.h, then main.c, then rfid.c.

Currently, the RFID module is able to send a REQA command, and receive an ATQA through the function
Rfid_searchForTag. However, the code to send an ANTICOLLISION command, and therefore obtain a
UID, is missing. We encourage you to use the pseudocode above - as well as the knowledge you have gained
from reading this guide - to implement the missing function.

Hint: Sending an ANTICOLLISION command follows the exact same principles as a REQA command, so
the structure will be very similar to the provided Rfid_searchForTag function!

Hint: Recall that ANTICOLLISION’s command code (0x93 0x20) is 2 bytes long. To handle this, you need
to write to the FIFODataReg register two times: 0x93 first, followed by 0x20.

Hint: ANTICOLLISION is a full 8-bit command, so you also need to alter the value you write to the
BitFramingReg register. What value should you write? The datasheet should come in handy.

Hint: The internal function Rfid_performChecksum has been provided for you, and error checks a UID
against its BCC: it takes the XOR over a UID’s 4 bytes, and checks if that result is equal to its BCC.

3.7 Troubleshooting

e If your RFID reader does not seem to work at all:

— If Rfid_printFirmwareVersion fails, then your RFID reader itself may be broken. Try the
program on another MFRC522 unit.

16

https://www.nxp.com/docs/en/data-sheet/MFRC522.pdf

— Ensure that you have not removed or altered any code from the original support files outside of
the assigned TODOs, especially the functions Rfid_init and Rfid_transceive.

e If your RFID reader can read the firmware version correctly, but subsequent operations seem to fail or
return strange results:

— You may have implemented Spi_writeReg or Rfid_writeReg incorrectly, so your writes are not
performing the expected roles. You can test this theory by writing a value like 0x07 to the
BitFramingReg register, and then calling Rfid_readReg, which is already implemented correctly,
on that register. Check if the read value matches the value you wrote.

e If you are occasionally receiving an inaccurate or different UID from a single tag:

— You may not have implemented the error checking properly, leading to a poorly transmitted UID
slipping through. Follow the structure of the (3) error checks seen in Rfid_searchForTag.

e If your RFID reader reads a tag’s UID successfully at first, but subsequently does not seem to read
any tag until you restart the program:

— In altering the module for your own needs, you may have changed the structure of main RFID
reading loop to be slightly different than the original support files. Our reading loop was con-
structed very carefully to avoid any infinite loop problems. Try changing it back to the exact
original. If that solves the problem, but you still need to change the loop, then ensure that you
do not change the general structure of the loop.

— You may be holding multiple tags within the reader’s RF field, which has been documented to

cause undesired behaviours. You should plan to only read one tag at a time.

e If your application occasionally returns a RFID_TIMEOUT_ERR even when a tag is permanently sitting
on the reader, and this intermittent inaccuracy is unacceptable for your application:

— This happened to us as well, and we were unable to determine the cause. For our use case,
employing the “N samples past the threshold” strategy described in lecture to essentially ignore
an errant timeout error was sufficient.

17

4 Appendix

Below are a list of resources referenced in the creation of this guide. Most of these are official documentation,
which go into much greater detail on their respective technologies. If you wish to do anything deeper than
what has been explored in this guide (such as reading and writing any block other than the Manufacturer
Block on the MIFARE Classic 1K), these resources are compulsory.

If any of the following lead to dead links in the future, try pasting the link into the Wayback Machine to see
if you can find a saved copy.

Thank you for reading this guide. Good luck, and happy coding!
MFRC522 Sample Implementation

miguelbalboa’s Arduino MFRC522 Library

Datasheets

MFRC522 Datasheet

MF1S503x/MIFARE Classic 1K Datasheet
RFID Technology Specification
[SO/TEC 14443-2 (Part 2)

[SO/TEC 14443-3 (Part 3)

UID Specification

AN10927

18

https://web.archive.org/
https://github.com/miguelbalboa/rfid
https://www.nxp.com/docs/en/data-sheet/MFRC522.pdf
https://www.mouser.com/datasheet/2/302/MF1S503x-89574.pdf
http://emutag.com/iso/14443-2.pdf
https://wg8.de/wg8n1496_17n3613_Ballot_FCD14443-3.pdf
https://www.nxp.com/docs/en/application-note/AN10927.pdf

	Introduction
	SPI
	Overview
	Configuring SPI on the BeagleBone
	Working with SPI in C
	Initialization
	Reading and Writing Registers

	Support Files
	Troubleshooting

	RFID
	Overview
	MF1S503x, aka the MIFARE Classic 1K
	The UID
	Commands

	MFRC522
	The FIFO Buffer
	Commands, Part II
	Registers
	Formatting a Register Address
	Wiring to the BeagleBone

	Working with RFID in C
	Writing a Command to the FIFO Buffer
	Executing a Transceive
	Checking for Errors
	Reading a Tag's Response from the FIFO Buffer

	Obtaining a UID
	Support Files
	Troubleshooting

	Appendix

