CMPT 433 How to Guide

Grove: Relay w/Pump

CMPT 433 Spring 2023 By: Dylan Feng & Sarah Li

Note: Tested on BeagleBone Green & Zen Green (V1.0)

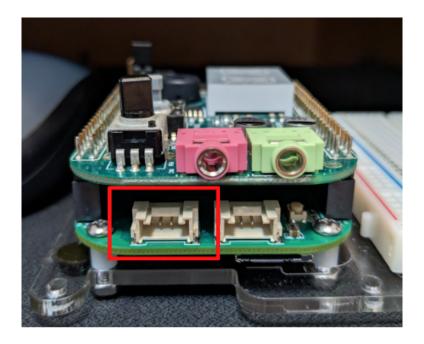
Table of Contents

1. Introduction.	2
2. Connecting the Relay to the BeagleBone	2
3. Toggling the Relay in the Linux Terminal	
4. Toggling the Relay in C	
5. Wiring the Pump to the Relay	
1. Equipment needed:	6
2. Wiring the pump:	
3. Controlling the pump:	
6. Troubleshooting	
Pump is not working	
• Relay is not working	
References	10

Formatting

- 1. Host (desktop) commands starting with (host) \$ are Linux console commands (host) \$ echo "Hello world"
- 2. Target (board) commands start with (bbg) $\,$ $\,$

(bbg) \$ echo "On embedded board"


1. Introduction

The Grove Relay is a switch that is controllable electrically to open and close a circuit. It uses a Grove connector, which is a 4 pin cable for easier wiring. This guide will demonstrate how to connect the relay to the BeagleBone and use it in a program that uses a 12 volt pump.

			Grov	e Relay Spec	ifications [1]			
Operate Voltage	Input Current	Rated Load	Contact Resistance	Insulation Resistance	Operate Time	Release Time	Input Interface	Туре
3.3V-5V	100mA	5A@250VAC 5A@30VDC	50mΩ @6VDC 1A	100ΜΩ	10ms Max.	5ms Max.	Digital	Electromechanical

2. Connecting the Relay to the BeagleBone

Below shows a picture of the two Grove connectors that the BeagleBone has. The leftmost Grove connector is I²C (in the red box), and the other Grove connector is UART. We will be using the I²C Grove connector, so the white connector on the relay will be plugged into the leftmost Grove pin on the BeagleBone. The white connector should only be able to fit into the Grove connector in one orientation.

To remove the wire, press down firmly on the groove on top of the pin and pull the wire while pressing the groove down. Depending on the wire, some don't need the groove to be pressed down and can be removed simply by pulling.

3. Toggling the Relay in the Linux Terminal

When the relay is initially plugged into the BeagleBone, the switch will be closed. When the switch is closed, electricity will flow through the switch and a red LED will light up on the relay. When opening/closing the switch, a short click noise should be audible to indicate that the relay was triggered as well.

Head_pin	\$PINS	ADDR/OFFSET	Name	GPIO NO.	Mode7		
P9_01			GND				
P9_02			GND				
P9_03			DC_3.3V				
P9_04			DC_3.3V				
P9_05			VDD_5V				
P9_06			VDD_5V				
P9_07			SYS_5V				
P9_08			SYS_5V				
P9_09			PWR_BUT				
P9_10			SYS_RESETn				
P9_11	28	0x870/070	UART4_RXD	30	gpio0[30]		
P9_12	30	0x878/078	GPIO1_28	60	gpio1[28]		
P9_13	29	0x874/074	UART4_TXD	31	gpio0[31]		
P9_14	18	0x848/048	EHRPWM1A	50	gpio1[18]		
P9_15	16	0x840/040	GPIO1_16	48	gpio1[16]		
P9_16	19	0x84c/04c	EHRPWM1B	51	gpio1[19]		
P9_17	87	0x95c/15c	I2C1_SCL	5	gpio0[5]		
P9_18	86	0x958/158	I2C1_SDA	4	gpio0[4]		
P9_19	95	0x97c/17c	I2C2_SCL	13	gpio0[13]		
P9_20	94	0x978/178	I2C2_SDA	12	gpio0[12]		
P9_21	85	0x954/154	UART2_TXD	3	gpio0[3]		
P9_22	84	0x950/150	UART2_RXD	2	gpio0[2]		
P9_23	17	0x844/044	GPIO1_17	49	gpio1[17]		

The I²C Grove connector corresponds to I²C2 SCL and I²C2 SDA on pins P9#19 and P9#20 respectively. To control the relay, we will be using GPIO.

- 1. Configure the P9#19 & P9#20 pins to GPIO
 - o \$ (bbg) config-pin P9 19 GPIO
 - o \$ (bbg) config-pin P9 20 GPIO
- 2. Change into the GPIO directory
 - o \$ (bbg) cd /sys/class/gpio
- 3. Export pins if needed (P9#19 maps to GPIO#13 and P9#20 maps to GPIO#12)
 - Check if GPIO#12 and GPIO#13 are available
 - \$ (bbg) **ls**
 - Export them if not listed:
 - \$ (bbg) echo 13 > export
 - \$ (bbg) echo 12 > export
- 4. Change into GPIO#13 directory. Only GPIO#13 matters for controlling the relay.
 - o \$ (bbg) cd gpio13
- 5. Configure the direction of the GPIO pin to output

```
o $ (bbg) echo out > direction
```

- 6. To close and open the relay, echo 1 and 0 respectively
 - Close the switch, allowing electricity to flow:
 - \$ (bbq) echo 1 > value
 - Open the switch, stopping the flow of electricity. The red LED will turn off:
 - \$ (bbg) echo 0 > value

4. Toggling the Relay in C

The steps to toggle the relay in C are the same as the steps as toggling the relay in the terminal.

We will be using these helper functions given by Dr. Brian Fraser to write into a file and use shell commands.

```
static void writeToFile(char* fileLocation, char* message)
{
    FILE* file = fopen(fileLocation, "w");
    if(!file) {
        printf("ERROR OPENING FILE %s\n", fileLocation);
        fclose(file);
        exit(1);
    }
    if(fprintf(file, "%s", message) <= 0) {</pre>
        printf("ERROR PRINTING TO FILE %s\n", fileLocation);
        exit(1);
    }
    fclose(file);
}
static void runCommand(char* command)
{
   // Execute the shell command (output into pipe)
    FILE *pipe = popen(command, "r");
   // Ignore output of the command; but consume it
   // So we don't get an error when closing the pipe.
    char buffer[1024];
   while (!feof(pipe) && !ferror(pipe)) {
        if (fgets(buffer, sizeof(buffer), pipe) == NULL)
        break;
        // printf("--> %s", buffer); // Uncomment for debugging
```

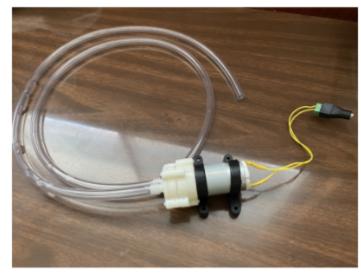
```
}

// Get the exit code from the pipe; non-zero is an error:
int exitCode = WEXITSTATUS(pclose(pipe));
if (exitCode != 0) {
    perror("Unable to execute command:");
    printf(" command: %s\n", command);
    printf(" exit code: %d\n", exitCode);
}
```

• Initialize pins P9#19 & P9#20 to GPIO and set the direction to output:

```
// Configure pins to GPIO
runCommand("config-pin P9_19 gpio");
runCommand("config-pin P9_20 gpio");

// Set up GPIO values
writeToFile("/sys/class/gpio/gpio13/direction", "out");
writeToFile("/sys/class/gpio/gpio13/value", "0");
```


• Close the switch:

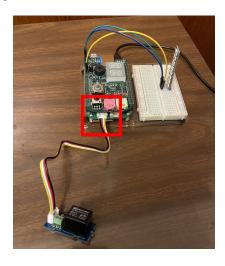
```
writeToFile("/sys/class/gpio/gpio13/value", "1");
```

• Open the switch:

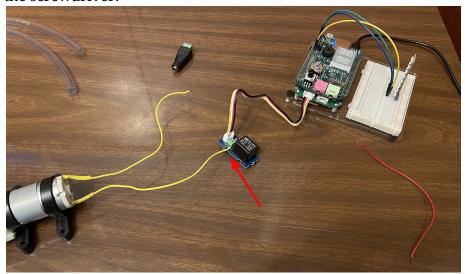
```
writeToFile("/sys/class/gpio/gpio13/value", "0");
```

5. Wiring the Pump to the Relay

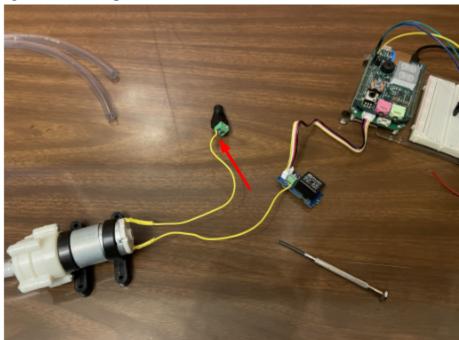
12V Pump


Extra wire

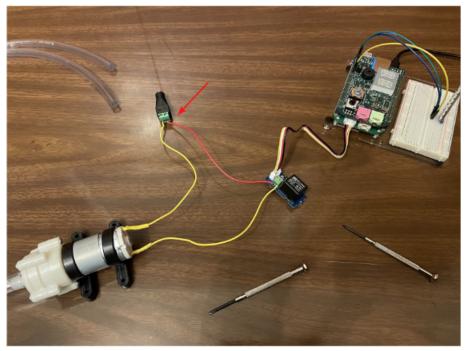
1. Equipment needed:

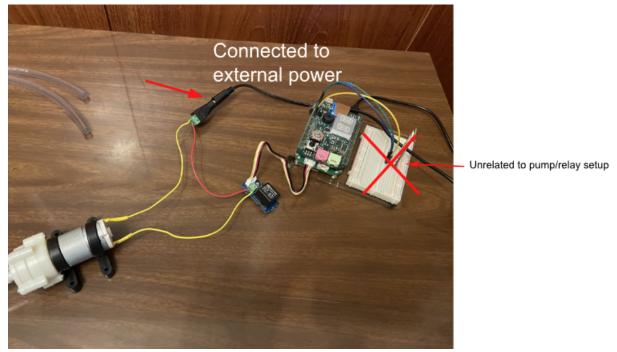

- An extra wire
- Pump
- Relay
- Screwdriver to tighten the clamp on the wires
- External power adapter to power the pump

2. Wiring the pump:


1. Connect the relay to the I²C2 Grove connector on the BeagleBone.

2. Connect one wire from the pump to the relay and tighten the clamp with the screwdriver.


3. Connect the other wire of the pump to a female DC power adapter and tighten the clamp.


4. Use the extra wire and connect one end of it to the relay.

5. Connect the other end of the wire to the female DC power adapter.

6. Connect the female DC power adapter to external power.

Note: Make sure all wires are clamped tightly enough to ensure connections are made.

3. Controlling the pump:

- 1. Close the relay to complete the circuit and turn the pump on.
- 2. Open the relay to break the circuit and turn the pump off.

6. Troubleshooting

Pump is not working

- o If the relay switches on and off but the pump doesn't work, try connecting the pump to a wall outlet power source directly (without the relay). It should immediately make noise to indicate it is on, otherwise the pump itself may not be working.
- Make sure that all wires are clamped tightly enough to ensure a secure connection (wire connection to the female DC power adapter, wire connection to the relay)

Relay is not working

- If the relay doesn't switch on and off via the command line, check that P9#19 and P9#20 have been configured to GPIO
 - \$ (bbg) config-pin -q p9.19
 - \$ (bbg) config-pin -q p9.20

References

- [1] Seeed Relay Information: https://wiki.seeedstudio.com/Seeed Relay Page/
- [2] Beaglebone Black P9 Header Table:

 $\underline{https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/cmpt433/guides/files/bbg_docs/B_eagleboneBlackP9HeaderTable.pdf}$