Group: BCDJ

4x20 LCD Custom Characters Guide

Jake Merkl
Bowie Gian
Chenting Mao

This guide will lead you through the steps of wiring and programming a 4x20 LCD and
manipulating it to display something beyond the basic functionality of text and number output.

Hardware requirements
-4x20 LCD

-1kQ+£5%

- Potentiometer (optional)

Table of Contents

L. COmMPONENE WITINE. ...\ttt ittt et et et et et et et et et et et et et et et e e e e et e et e e e e e e e ereenens 2
2. INTHANZATION. ...t 4
T -1 01 o) (I @ 1011011 A 5

3.1 - GPIO Manipulation. .......etetie ittt et et et et et ettt e e et e e e et e et e e e e e e 5

3.2 - IMPOTtant fUNCHONS. .. ...ttt ettt e et e e e e e e e et et e e e aeaeens 6
4. Creating a CuStOmM CharaCter. ... ....ouiit e ettt e e 6
5. Outputting the Custom CharaCter...........c.vtitit ittt e e et eeeeenenes 7

(fig.1 - Custom character output)



Group: BCDJ
1. Component Wiring

The first step is getting your LCD onto the breadboard. There are a total of 16 pins on the
LCD.

(fig.2 - LCD pins on screen)

INTERFACE PIN FUNCTIONS

;l;l Symbol | Level Description

1 VSS v Ground.

2 VDD +5.0V Power supply for logic operating.

3 Vo - Adjusting supply voltage for LCD driving,
A signal for selecting registers:

4 RS H/L 1: Data Register (for read and write)
0: Instruction Register (for write), Busy flag-Address Counter (for read).
R/W =*“H": Read mode.

S RIW L R/W =*“L”: Write mode.

6 E H/L An enable signal for writing or reading data.

7 DB0 H/L

8 DBI1 H/L

9 DB2 H/L

10 | DB3 H/L This is an 8-bit bi-directional data bus.

11 DB4 H/L

12 | DBS H/L

13 DB6 H/L

14 DB7 H/L

15 | LED+ +5.0V Power supply for backlight.

16 LED- v The backlight ground.

(fig. 3 - LCD pinout from Adafruit TC1602A4-01T datasheet [1])
**Note that in the table above LED+/- are used to represent A (LED+) and K (LED-)

Connect the VSS to ground and the VDD to +5V. The VO pin will be your screen
brightness pin where you would connect the potentiometer. If you decide you don’t want to use
the potentiometer or don’t have one on hand, a simple voltage divider with resistor values to fit
your brightness requirements to this pin works just as well.



Group: BCDJ

The pins RS to D7 are all GPIO pins that can go to any pin. We ground the RW pin so
that it reads a 0 and is stuck in write mode since we always want to be writing to the screen in
this case. It is good practice to place a resistor between the +5V and the A pin so as to not run

too much current through it and burn the backlight.

The sample code uses P9 - 11, 13, 15, 17, 21, 23, 25, 27, 29, 31
organized in order : [RS, EN, DO, D1, D2, D3, D4, D5, D6, D7]

@
c
)
o
<
=]
©
@
s

(fig.4 - wiring for sample code)

Troubleshooting:
- Remember to set all GPIO pins before attempting to write to them
- If your screen wont turn on check the voltage input pins and make sure you didn't burn the

backlight



2. Initialization

Group: BCDJ

The LCD has on board functions to deal with the type of job you are looking to apply it
to. First we set what mode we want to write in. The screen lets us choose between an 8-bit mode
using all registers or a 4-bit mode using only 4. The sample code uses 8-bit mode so we will list
commands as such within this guide.

**[f you are interested in 4-bit mode you can toggle it on with the boolean variable isNibbleMode within the sample

code.

After selecting the write mode, we then clear the screen, turn off the cursor, and set the

address of the 5x8 character spaces to auto-increment.

Table 6

Instructions

Code

Instruction RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Description

Execution Time
(max) (when f_, or
fosc is 270 kHz)

Clear 0 0 0 0 0 0 0 0 0 1 Clears entire display and
display sets DDRAM address 0 in
address counter.
Return 0 0 0 0 0 0 0 0 1 —  Sets DDRAM address 0 in 1.52 ms
home address counter. Also
returns display from being
shifted to original position.
DDRAM contents remain
unchanged.
Entry 0 0 0 0 0 0 0 1 D S Sets cursor move direction 37 us
mode set and specifies display shift.
These operations are
performed during data write
and read.
Display 0 0 0 0 0 0 1 D C B Sets entire display (D) on/off, 37 us
on/off cursor on/off (C), and
control blinking of cursor position
character (B).
Cursoror 0 0 0 0 0 1 S/IC RIL — —  Moves cursor and shifts 37 us
display display without changing
shift DDRAM contents.
Function 0 0 0 0 1 DL N F — — Sets interface data length 37 us
set DL), number of display lines
N), and character font (F).
Set 0 0 0 1 ACG ACG ACG ACG ACG ACG Sets CGRAM address. 37 us
CGRAM CGRAM data is sent and
address received after this setting.
Set 0 0 1 ADD ADD ADD ADD ADD ADD ADD Sets DDRAM address. 37 us
DDRAM DDRAM data is sent and
address received after this setting.
Read busy 0 1 BF AC AC AC AC AC AC AC Reads busyflag ‘BF) Ops
flag & indicating internal operation
address is being performed and
reads address counter
contents.
(fig.5 - Instructions table from HD44780U HITACHI manual [2])
Troubleshooting -

- If somethings going wrong, you're probably not waiting for the suggested execution time.



3. Sample Output

3.1 GPIO manipulation -

Group: BCDJ

The HD44780U has a library of readily available characters to print within its memory
that we can read from. For this section we will use letters since they follow the C char value and

are easiest to deal with.

Table 6

Instructions (cont)

Code

Instruction RS R/W DB7 DBé DB5 DB4 DB3 DB2 DB1 DBO Description

Execution Time
(max) (when f_, or
fosc is 270 kHz)

Write data 1 0  Write data Writes data into DDRAM or 37 us
to CG or CGRAM. taop = 4 pus*
DDRAM
Read data 1 1 Read data Reads data from DDRAM or 37 us
from CG or CGRAM. tinn = 4 us*
DDRAM
/D =1: Increment DDRAM: Display data RAM  Execution time
I/D =0: Decrement CGRAM: Character generator changes when
S =1: Accompanies display shift RAM frequency changes
S/C =1: Display shift ACG: CGRAMaddress  Example:
SIC =0: Cursor move ADD: DDRAM address When f_, or foqc is
RIL =1: Shift to the right (corresponds to cursor 250 kHz,
R/IL =0: Shift to the left address) 37 us x270 = 40 us
DL =1: 8bits, DL =0: 4 bits AC: Address counter used for HS > 250 K
N =1 2lines, N=0: 1line both DD and CGRAM
F =1: 5x10dots, F=0: 5x8dots addresses
BF =1: Internally operating
BF =0: Instructions acceptable

(fig.6 - Read/Write bit table from HD44780U HITACHI manual [2])

To start outputting to your screen use the sample code supplied and #include the .h file

LcdScreen setup(false);

LcdScreen sendData('a');

LcdScreen moveCursor (1,0);
LcdScreen writeString ("Hello World!

// 8-bit mode,

")

into a main.c file and use the commands shown below. Then run the code on your BBG.

cursor 1is reset to (0,0)

**Note you must add spaces after the string to fill the remainder of the row due to

0 being a special memory location (see section 5)
(fig.7 - sample text output)




Group: BCDJ

Troubleshooting-
- Make sure to include all files in the makefile
- Make sure the shared folder is set up and mounted

3.2 Important functions -

Within the sample code we have included multiple functions that could be useful in use
of the screen for text output such as:

LcdScreen moveCursor () ;
LcdScreen showCursor () ;
LcdScreen hideCursor ()
LcdScreen sendData() ;

LcdScreen writeString () ;

These functions allow the user to have more freedom within the screen and make
outputting to it much more simplified.

4. Creating a custom character

Now that the main file is set up and the screen has an output, it's time to make that output
into something custom rather than text. This output can be whatever you can draw in a 5x8 pixel
box.

**Note the below steps are optional and are simply for designing your custom character conceptually

1. First go to https://www.pixilart.com/draw

2. Click skip at the top for the tutorial and wait for the popup

3. Edit the width to be 5 and height to be 8

4. Now create your own drawing in the canvas

5. Refer to lcdScreen.h and create a customChar t for that character.

This variable is an array of size 8 with each index in binary that correlates to the 5
columns of the character space. As an example we will use this character:

(fig. 8 - custom character arranged from pixelart.com)



Group: BCDJ

This character would then be represented within the customChar t as such:

customChar_ t character = {0b00000, 0b00000, Ob01110,
0b11000, Obl11110, 001010, 0OLOOOOO, 0bLOOOOO};

**[t is worth noting that the LCD only has enough space for 8 custom characters

5. Outputting the Custom Character

At this point your custom character will be within your code to write to the screen. All
that's left to do is simple:

1. Run command
Lcdscreen loadCstmChar (0, character);

after initialization.

This will load your character to the screen's memory at position 0 so it can read and write
your character to the screen.

2. Run the command
Lcdscreen placeChar (int row, int col, 0);

This will then write your character to the screen at the position [row, col] based on the

4x20 character boxes.

You now have displayed your own custom character onto the screen.



Group: BCDJ

Additional notes:

- Connecting a joystick and linking it to the Lcdscreen_placeChar(); function makes for
easy controlling of the character movement on the screen.

- Using the on board functions of the LCD combined with your custom character you can
make them scroll across the screen, jump down a row, animate them etc.

- You can alter how a character looks by editing the custom char file in between outputs to
the screen rather than taking up another space in memory to animate it. Note this will
affect all currently displayed instances of the custom character.

- Code can be easily adapted for a 2x16 LCD



Group: BCDJ

References

[1] - Tinsharp industrial co.
https://cdn-shop.adafruit.com/datasheets/TC1602A-01T.pdf
Used pin description table (pg. 5)

[2] - Hitachi HD44780U User Manual
https://cdn-shop.adafruit.com/datasheets/HD44780.pdf
Various photos and tables used (pg. 24, 25)

[3] - GPIO guide by Brian Fraser
https://opencoursehub.cs.sfu.ca/bfraser/grav-cms/ensc351/guides/files/GPIOGuide.pdf
Formatting adapted from this guide



