E

Voltage,

A2D,

Piece Wise Lineatrr,
Noise

ENSC351 Slides #7 © Dr. B. Fraser
25-9-26 (updated M. Stewart) 1

Topics

 What form are real-world signals?

 How can a computer read an analog signal?
 How can we approximate functions?

25-9-26 2

E

Signals in the “Real World”:
Voltage

25-9-26 3

Voltage

* Real world analog signals are often changes in

voltage:
— Ex: Microphone encodes sound into voltage levels

Audio: Zoomed in Audio: Zoomed out

25-9-26 4

Voltage Ranges

Vot —
,,,,,,,,,,,,,

These are all DC voltage

(Direct Current) 5.0V: Some circuits
(Arduino)
Out of the wall comes AC Voltage _ L
(Alternating Current) 3.3V: Many circuits
(BeagleBone)

1.8V: BeagleBone A2D ref V

—— 0V: Ground

25-9-26 5

Electronics Components (“Parts”)

* Many electronics components run on, manage, and

work with voltages.

Voltage Regulator:
Converts input voltage
to stable output voltage.

Potentiometer:
Turning the knob
adjusts the output
voltage on V_ .

Light Sensor:
The more light,
the lower the
voltage on V_

fluctuate
a little Stable | 4» [
4o 8Y — 33V 18V P)
Gnd B Vout
Gnd Gnd Gnd 1.8V Vout
Input Output

25-9-26

Reading a Voltage

 How can we read a signal into the computer?
- Real world is analog voltages; computer are digital.

- We need an analog to digital converter (ADC)
* Also called an A2D (Analog “to” Digital)

* BeagleBone has a 12 bit A2D:
- It reads a voltage and gives a number
between 0 and 2!*-1 (=4095)

- It can sample voltages between OV and 1.8V
* |t is easily damaged by higher voltages!

25-9-26 7

Quantization & Sampling

e Quantization:

Since it has 4096 samples over 1.8V
— Resolution of a single bit is:
1.8V /4096 = 0.00044V = 0.44 mV

This Is pretty good for most applications!

 Sample Rate:

How fast the A2D can read samples
- Need 44100 Hz (44.1kHz) for CD audio

- BeagleBone can sample at 1.6MHz (1600kHz)

- Some applications (reading a POT for volume) may
need low sample rates (~10Hz)

25-9-26 8

BBB A2D Demo for POT

 A2D is enabled by default
— Done for us by UBoot via /boot/uEnv.txt

* Change to sys file system folder:
wbg)s cd /sys/bus/iio/devices/iio\ :device0

* Read voltage O (for POT):
(bbg)$ cat in_ voltageO raw

25-9-26 9

E

Approximating Functions:
Piece Wise Linear

25-9-26 10

Function Approximations

* Real world functions can be hard to approximate.
- Some approximations are computationally
expensive (high-order polynomials, cubic-spline, ..)

- Piecewise Linear (PWL)
Approximate a function with a series of lines.

Battery Voltage vs DoD

13.00

1250

12.00 +

~— Asyou discharge a battery,
its voltage drops.
(DoD is Depth of
v | Discharge)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% o —

1150 +

11.00 -

1050 +

10.00

25-9-26 11

Piece Wise Linear

* Pick good points on the function f(x) to capture its
shape
— can be evenly spaced, or

— can be specially selected points

* Between adjacent points, draw a straight line.

* The approximation f'(x) Battery Voltage vs DoD
IS the straight lines. ;

125
12 4
115 +
11

105 A

10 +

95 ~ , , , " ~ ,
0% 10% 20% 30% 40% 50% 60% 70% B80% 90% 100%

25-9-26 12

Computing Plecewise Linear

* Given an input value s, use points on either side
 Compute f'(s) by solving the point on the line

Actual function

11 |
10.5 -~
f'(s)
10 _ | Linear approx.
95 T T \ /
85% 90% ?5% 100% :
S n @
a S b
S—da
f'(s)= (n—m)+m
b—a
25-9-26 13

Understanding Piecewise Linear

25-9-26 14

Piecewise Linear Detalls

* Some extra notes:
- If a reading is < min or > max data point,
clip it to min & max.

— Enter the points into a program as two arrays:

#tdefine PIECEWISE _NUM _POINTS 11
const float PIECEWISE DoD[] ={ .O, A P .8, 9. 1},
const float PIECEWISE V[] ={12.6, 12.3, ... 11.2, 11.1, 10};

- Make sure to use the correct data types for your
calculation (possibly floating point).

- Watch for array out of bounds!

25-9-26 15

Noise

* Real world data is often 'noisy"
- each sample has..
causing it to differ from the correct real-world value.

A2D Sample = (precise real-world value) + (noise)

12

Module Voltage to So(C

' 11.9

, ' 11.8

" 11.7

11.6

11.5

| — 11.4 ——AdjV

| |
—TT | 11.3

i } } 11.2

- 11.1

+ 11
80% 70% 60% 50% SoC 40% 30% 20% 10%

25-9-26 17

Problem with Noise

* A noisy signal’s fluctuations may be:
- changes in the real signal

- noise

* Ex: Turn off phone when battery is empty (3V)

What could ‘
static void powerDownlfBatteryDead() { =~ gowrong?
if (batteryVoltage < 3.0) {
powerDown();
}

}

- What happens when noise spike gives you 2.99V
reading when battery actually at 3.10V?

25-9-26 18

Tolerating Noise:
N Samples Past Threshold

e An Idea to tolerate some noise:..

* Ex: Power off if 5 consecutive samples are less than 3V:

static double batteryVHistory[5];
static void powerDownlfBatteryDead() {
for (inti=0;i<295;i++){
if (batteryVHistoryl[i] >= 3.0) {
return;
}
}

powerDown();

}

’ 25-9-26 19

Tolerating Noise: Hysteresis

e State machine should be stable:..

- Problematic Example:
Battery-saver when State of Charge < 30%
static bool inLowPower = false;
static void managelLowPowerState() {
if (batterySoC < 30) {
iInLowPower = true;

} else {
inLowPower = false;
}

}
e Problem?

’ 25-9-26 20

Hysteresis Solution

e A solution:

static bool inLowPower = false;
static void managelLowPowerState() {
// Enter
if (batterySoC < 30) {
iInLowPower = true;
}

Il Exit (5% SoC Hysteresis)

if (batterySoC > 35) {
inLowPower = false;

}

}

’ 25-9-26 21

x(t)

Noise Filters

25-9-26

22

Simple Moving Average

* Rather than tolerating noise,..

* Maintain buffer of previous N samples

static double batteryVFiltered = 0O;

static double samples[10];

static int nextldx = 0;

static void getNewBatetryV() {
[/ Sample
samples[nextldx] = readA2DVoltage();
nextldx = (nextldx + 1) % 10;

Il Filter
batteryVFiltered = average(samples, 10);
//batteryVFiltered = median(samples, 10);

}

static double average(double *data, int numValues) {...}
* Note: Must also handle non-full buffer.

25-9-26 23

Noise Example

Signal and Noise

15

al

-0.5

e f-pUIE(X)
— NOiSE

Signal Value [V]
o
e——

-15

Time

25-9-26 24

Simple Moving Average Effectiveness

Moving Average

15
D
1 7\ ¥ A
4 1;‘\\ Al
‘ q \ 7 \\ » \ ; ‘\\
// A~ /)7 TN\
S / v / , ! \ —1(x)
g // \ \ — Avg, N=3
g 0- | | ‘ ‘ ‘ ‘ ‘ . m— Avg, N=10
E 0 / \ 1 2 _ 4 5 Gl / 7 8 9 WV N ——Med, N=3
|/ Why is N=10 \ W'ﬁ I | .
, blots shifted? : 'NA%,» g Is averaging or median filtering better?
\'m When might median be clear winner?
o ‘ -
-1.5

25-9-26 25

Exponential Smoothing

* Simple moving average equally weights all samples,

* Exponential Smoothing Details
- Let s_be the Nth sample from the A2D

_et v_be the Nth filtered value
_et a be a weighting value between 0 and 1

« Smoothed Data Points (v)
VO - S0

v=a*s + (1-a)*v(n_l)

25-9-26 26

Exponential Smoothing Intuition

« s_Is the Nth sample from the A2D
v_is the Nth filtered value
a Is a weighting value between 0 and 1

« Smoothed Data Points (v)
VO - SO
v=a*s + (1-a)*v

(n-1)

* |ntuition
- a=1:100% weight on instantaneous ‘now’ sample
(filtering disabled)

- a=0.1: Very heavy weight on old data, not much on
new data (average over very long time frame)

25-9-26 27

Exponential Smoothing Effectiveness

Exponential Smoothing

"N

g ° (i > A) 5 7 8 s W\
\ \ 7/)
Ny

v‘:

N —_—

25-9-26 28

Summary

* Many sensor generate analog voltage signals.
- Be careful that signal is in correct voltage range!

 BBB can sample voltages between 0 and 1.8V
- 12-bit A2D: digital values between 0 and 4095

* Piecewise Linear approximates functions
- Given a reading (on the X axis),
use the selected points and straight lines to
approximate desired value (on the Y axis)

* Noise adds errors to samples
— Tolerate nose with hysteresis and filter thresholds

- Filter with simple moving average or exponential

smoothing.
25-9-26 29

