E

Real-Time & Linux

Sources:
“Real-time Systems” by (Jane Liu, 2000) Ch 2
"HOWTO build a simple RT application” by the Linux Foundation

https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/application_base

25-11-12 ENSC 351 Slides 17 © Dr. B. Fraser, updated M. Stewart 1

Topics

1) What is Hard vs Soft real-time?

2) How can we know when a task will run?
(Deterministic Latency)

25-11-12 2

E

Hard vs Soft Real-Time

25-11-12 3

Timing Constraints

 Job

- Example: calculating the statistics over hundreds of light-
Intensity samples each second.

* Real-Time (RT) systems have jobs that must be started and
completed by certain times.

Latency
. JobExecutng .
Time Response Time "
Relative Deadline

Release Time

e Job's timing constraint: its release time and relative deadline

’25—11—12 4

Common Definitions

* Common definitions
- Hard RT
missing a timing deadline is considered
a fatal flaw in the system.

* Ex: collision avoidance system on a train yields a crash.

- Soft RT
missing a timing deadline yields
degraded performance.

* EX: video playback yields a stutter

* Poor definition because it's subjective:
It depends on defining how fatal "late" is.

25-11-12 5

Our Definitions of RT

 Hard Realtime
- User requires..

- "Guaranteed Services"
Mathematical/logical proof or exhaustive simulation
required

- Hard real-time is about..

* Soft Realtime
— User only requires..

(statistical analysis)

- "Best effort Services"
EXx: Average # missed deadline < 2 per minute.

- Soft real-time Is about..
25-11-12 6

Goals of RT

 What is latency?
- Latency is..

— We often care about critical tasks such as responding to high-
priority interrupts (interrupt latency)

* Goal
- low and deterministic latency

 Example:
- Battery Management System:
over-current detection triggers bank shutdown

- Effect of non-deterministic latency in this example
- [Draw a picture]

25-11-12 7

Hard RT: Scheduling Guarantees

* Example
- Airplane flight control needs reliable timing to:

* Read sensors
* Compute “control-laws” to generate responses
* Send responses to actuators

* OS guarantees

* How?
- Each new job comes with a duration and a deadline

- System only allows new job if it can guarantee it can
complete it by the deadline

25-11-12 8

E

Deterministic Latency

25-11-12 9

Deterministic Latency

Deterministic low latency RT requires:

— support low-latency response

— requires preemptible kernel with short critical
sections

— Avoid non-deterministic latencies on RT path
- Use OS features for memory & scheduling

25-11-12 10

OS: Linux RT Patch

* Linux RT patch: PREEMPT_RT
- Goal I1s to "minimize the amount of kernel code that Is
non-preemptible." (ttps:/mwn.net/Articles/146861/)

* Patch has been cleaning up Linux kernel for years
- Many of its features are on the "mainline" and have
iImproved Linux for general uses (ex: better audio)

- RT Patch makes kernel interruptible almost everywhere

 [DRAW]: syscall & context switch process
1) App executes sys-call

2) Kernel provides services; returns to app
Any time: Kernel timer invokes context switch

25-11-12 11

Application Req for Deterministic Latency

o Step 1.
- OS supports low latency
(Just saw that!)

o Step 2:
- RT application takes steps to prevent
nondeterministic latencies

- Example sources of non-deterministic delays
 memory faults
e scheduling delays and context switches
* priority inversion (later)

25-11-12 https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/application_base 12

App 1) Memory Locking

* Swap Memory
- A computer's memory (RAM) is divided up into pages.
When running low on memory, OS swaps pages out to
disk (swap file).

- Even without swap file, OS can "swap" our executable
code's memory page because it's already on disk.

* Page fault
- If page is swapped to disk,..

* Problem
- Page faults are..

’25—11—12 13

App 1) Memory Locking solution

e Solution: Memory Locking
- Ask the kernel to

/* Lock all current and future pages
preventing being paged to swap */

1f (mlockall (MCL CURRENT | MCL FUTURE)) |
perror ("mlockall failed");
exit(-1); // Or handle error

* Run this code before any RT processing starts

’25_1 1-12 SOURCE: Memory for Real-time Applications: the Linux Foundation 14
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/memory#memory locking

App 2) Stack Memory

* Each thread has its own stack in memory.
- If spawning many threads, can..

* Problem
- If all pages are locked in RAM, we must ensure we
don't exhaust available memory.

- Spawning new thread allocates new memory;
If locked to RAM then triggers a page fault.

e Solution

- Understand memory use of each thread,
and..
(default ~8mb)

75.11-12 SOURCE: Memory for Real-time Applications: the Linux Foundation 15
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/memory#memory locking

App 2) Stack Memory

 Set thread stack size:

static void create rt thread(void)

{

pthread t thread;
pthread attr t attr;

/* init to default wvalues */
if (pthread attr init(&attr))
error (1) ;

/* Set a specific stack size */
int size = PTHREAD STACK MIN + MY STACK SIZE;

if (pthread attr setstacksize(&attr, size))
error (2);

/* Finally start the actual thread */
pthread create(&thread, &attr, rt func, NULL);

25.11-12 SOURCE: Memory for Real-time Applications: the Linux Foundation

o . .) o . 16
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/memory#memory locking

App 3) Dynamic Memory

* Problem
- Dynamically allocating or freeing memory can

e Solution
— RT critical paths should not dynamically allocate or free
memory.

- Instead, preallocate all memory for RT paths:
* Init() functions dynamically allocate memory

* Non-RT code allocate memory, pass pointer to RT
path

25-11-12 17

App 4) Priorities and Scheduling

* OS schedules tasks (jobs) based on its scheduling
algorithm and task priority.

* Problem
- Some tasks are more time critical, and must be run
sooner than others.

Solution
- Assign each task a reasonable priority

e More to come on this!

’25—11—12 18

Summary

* Real-time
- Hard RT requires scheduling guarantees

- Soft RT requires a best-effort with low latency

* OS Features
- Preemptable kernel with priorities for tasks

* App Features
- Memory locking to prevent page faults

— Task stack memory management to reduce memory
pressure

- No dynamic memory allocation/free on RT path
— Task priorities

25-11-12 19

