Real-Time & Linux

sources:
“Real-time Systems” by (Jane Liu, 2000) Ch 2
"HOWTO build a simple RT application” by the Linux Foundation

https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/application_base

25-11-12 ENSC 351 Slides 17 © Dr. B. Fraser, updated M. Stewart !

Topics

1) What is Hard vs Soft real-time?

2) How can we know when a task will run?
(Deterministic Latency)

25-11-12 2

Hard vs Soft Real-Time

25-11-12 3

Timing Constraints
* Job

n . calculating the statistics over hundreds of light-
Intensity samples each second.

* Real-Time (RT) systems have jobs that must be started and
completed by certain times.

Latency
Job Executing
Time Response Time

Release Time Relative Deadline

* Job's timing constraint: its release time and relative deadline

25-11-12 4

Common Definitions

- Hard RT
missing a timing deadline is considered
a fatal flaw in the system.

» Ex: collision avoidance system on a train yields a crash.

- Soft RT
missing a timing deadline yields
degraded performance.
» Ex: video playback yields a stutter

* Poor definition because It's subjective:
It depends on defining how fatal "late" is.

25-11-12 5

Our Definitions of RT

- User requires..

- "Guaranteed Services"
Mathematical/logical proof or exhaustive simulation
required

- Hard real-time Is about..

- User only requires..

(statistical analysis)

- "Best effort Services"
Ex: Average # missed deadline < 2 per minute.

- Soft real-time Is about..
25-11-12 6

Goals of RT

. latency
- Latency is..

— We often care about critical tasks such as responding to high-
priority interrupts (interrupt latency)

- low and deterministic latency

- Battery Management System:
over-current detection triggers bank shutdown

- Effect of non-deterministic latency in this example
— [Draw a picture]

25-11-12 7

Hard RT: Scheduling Guarantees

- Airplane flight control needs reliable timing to:
* Read sensors
* Compute “control-laws” to generate responses
* Send responses to actuators

- Each new job comes with a duration and a deadline

- System only allows new job if it can guarantee it can
complete it by the deadline

25-11-12 8

Deterministic Latency

25-11-12 9

Deterministic Latency

Deterministic low latency RT requires:

— support low-latency response

- requires preemptible kernel with short critical
sections

— Avoid non-deterministic latencies on RT path
- Use OS features for memory & scheduling

25-11-12 10

OS: Linux RT Patch

- Goal Is to "minimize the amount of kernel code that Is
non-preemptible." (nttps:/mwn.net/Articles/146861/)

* Patch has been cleaning up Linux kernel for years
- Many of its features are on the "mainline" and have
iImproved Linux for general uses (ex: better audio)

- RT Patch makes kernel interruptible almost everywhere

1) App executes sys-call
2) Kernel provides services; returns to app
Any time: Kernel timer invokes context switch

25-11-12 11

Application Req for Deterministic Latency

- OS supports low latency
(Just saw that!)

- RT application takes steps to prevent
nondeterministic latencies

- Example sources of non-deterministic delays
* memory faults
e scheduling delays and context switches
e priority inversion (later)

25-11-12 https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/application_base 12

App 1) Memory Locking

- A computer's memory (RAM) is divided up into pages.
When running low on memory, OS swaps pages out to
disk (swap file).

- Even without swap file, OS can "swap" our executable
code's memory page because it's already on disk.

- If page is swapped to disk,..

- Page faults are..

25-11-12 13

App 1) Memory Locking solution

. Memory Locking
- Ask the kernel to

/* Lock all current and future pages
preventing being paged to swap */
1f (mlockall (MCL CURRENT | MCL FUTURE)) |

perror ("mlockall failed");
exit(-1); // Or handle error

* Run this code before any RT processing starts

25.11-12 SOURCE: Memory for Real-time Applications: the Linux Foundation 14
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/memory#memory lockin

App 2) Stack Memory

* Each thread has its own stack in memory.
- If spawning many threads, can..

- If all pages are locked in RAM, we must ensure we
don't exhaust available memory.

- Spawning new thread allocates new memory;
If locked to RAM then triggers a page fault.

- Understand memory use of each thread,

and..
(default ~8mb)

25.11-12 SOURCE: Memory for Real-time Applications: the Linux Foundation 15
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/memory#memory lockin

App 2) Stack Memory

 Set thread stack size:

static void create rt thread(void)
{

pthread t thread;

pthread attr t attr;

/* init to default wvalues */
if (pthread attr init(&attr))
error (1) ;

/* Set a specific stack size *
int size = PTHREAD STACK MIN + MY STACK SIZE;

if (pthread attr setstacksize(&attr, size))
error (2);

/* Finally start the actual thread */
pthread create(&thread, &attr, rt func, NULL);

25.11-12 SOURCE: Memory for Real-time Applications: the Linux Foundation
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/memory#memo

App 3) Dynamic Memory
- Dynamically allocating or freeing memory can

— RT critical paths should not dynamically allocate or free
memory.

- Instead, preallocate all memory for RT paths:
* init() functions dynamically allocate memory

* Non-RT code allocate memory, pass pointer to RT
path

25-11-12 17

App 4) Priorities and Scheduling

25-11-12

OS schedules tasks (jobs) based on its scheduling
algorithm and task priority.

- Some tasks are more time critical, and must be run
sooner than others.

— Assign each task a reasonable priority

More to come on this!

18

Summary

- Hard RT requires scheduling guarantees
- Soft RT requires a best-effort with low latency

- Preemptable kernel with priorities for tasks

- Memory locking to prevent page faults

- Task stack memory management to reduce memory
pressure

- No dynamic memory allocation/free on RT path
- Task priorities

25-11-12 19

