AL -

~ Topics

1) What are the bitwise operators?
2) What is a bit flags and masks?

3) How to:
a) Read / set single bits.

b) Read / set multiple bits.
4) Can C access bits better than just bitwise?

25-10-17

Bitwise and Bitmasks

* Bitwise operators

- |is OR - Set selected bits

- &IsAND -.

- ~ISNOT - Invert all bits

- Mis XOR - Invert selected bits.
* Bit Flags

— Store multiple binary conditions in a multi-bit value.
- EXx: encoding the state of 8 LEDs in one char.

e Mask
- Used to..

— Has all 1's for bits of that field; O elsewhere.

’25—10—17 3

Running Example

« STAT: GPIO Status Reg

Bit 15 14 13 12 11 10 9 8
LED3 | LED2 | LED1 | LEDO | BTN3 | BTN2 | BTN1 | BTNO
RorW RW RW RW R/W R R R R
Bit 7 6 5 4 3 2 1 0
SPD2 SPD1 SPDO - - - - FLASH
RorW R/W RW R/W R R R R R/W
 LEDXx: Set (1) when on

* BUTTONxX: Read 0 when pressed; 1 otherwise.
SPD2-0: Flash speed; between 0 (slow) and 7 (fast)

I FLASH: 1 means flashing; 0 means solid (on).
25-10-17 4

Running Example

Bit 15 14 13 12 11 10 9 8
LED3 LED2 LED1 LEDO BTN3 BTN2 BTN1 BTNO

Bit V4 6 5 4 3 2 1 0
SPD2 SPD1 SPDO - - - - FLASH
e \What does this value mean? OxC2A7

25-10-17 5

BIT Numbers and Masks

 Bit Numbers
- #define LED3_BIT 15
#define LED2_BIT 14

- #define BTN3_BIT 11

- #define SPD2_BIT 7
#define SPD1 _BIT 6
#define SPDO_BIT 5

- #define FLASH _BIT O

e Convert Bit Number to Mask
- #define LEDO_MASK (1 << LEDO_BIT)

’25-10—17

Reading a Bit

e Read an LED State
- bool isLed0On = ..

e Read a Button State
- bool iIsBtnOPressed = ..

* As Macros
- #define IS_LED_ ON(pin) \
((STAT & (1 << (pin))) = 0)

- #define IS BUTTON_PRESSED(pin) \
((STAT & (1 << (pin))) == 0)

25-10-17 7

Reading Bits

 Read Multiple Bits
- #define LED MASK 0xF00O;

- bool iIsAnyLEDOnN = ..

- bool areAllILEDsOn = ..

* Read Multiple Active-Low Bits
- #define BTN_MASK 0x0FO00

- bool iIsAnyButtonPressed = ..

- bool areAllButtonsPressed =
(STAT & BTN_MASK) == 0;

25-10-17 8

Drive Bits

e Turnon LED 2
STAT..

e Turn off LED 2
STAT..

e Turn off LEDs 1 and 2
STAT &= ~(1<<LED2 BIT | 1<<LED1 BIT);

e Turn on/ off all LEDs
STAT |= LED_MASK,;
STAT &= ~LED MASK;

* Turn off all LEDs but LEDZ2 (leave it)
STAT..

’25—10—17 9

~ ToggleBts

* // Toggle LEDO:
STAT

* /[Toggle all LEDs:
STAT "= LED_MASK,

25-10-17 10

Multi-Bit Fields

 Read value
- #define SPD_MASK 0x00EO
Int speed =

* Setvalue
- void setFlashSpeed(int speed) {
Int newSpeed = (speed << SPDO_BIT)
& SPD_MASK;
STAT = (STAT & ~SPD_MASK) | newSpeed,;

’25—10—17 11

Common Errors

e ~vs! &vs &&, |vs||
e &= vs &=~(..)
 bit# vs mask: LED1 BIT vs (1<<LED1 BIT)

* use (1<<x) not pow(2,X)
use (1<<x) | (1<<y), not 1<<(x]y)
b &= ~(1<<X) Isnot b =~(1<<x)

25-10-17 12

8-bit Timer/Counter Register Description

Timer/Counter2 Control Register A- TCCR2A

Real World Example: ATMEL CAN128

CS20 | TcCR2A

Bit 7 6 5 B 3 2 1 0
FOC2A | WGM20 | COM2A1 | COM2A0 | WGM21 CSs22 cs21

Read/Write W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

 Bit7 - FOC2A: Force Output Compare A

The FOC2A bit is only active when the WGM bits specify a non-PWM mode. However, for ensur-
ing compatibility with future devices, this bit must be set to zero when TCCR2A is written when
operating in PWM mode. When writing a logical one to the FOC2A bit, an immediate compare
match is forced on the Waveform Generation unit. The OC2A output is changed according to its
COM2A1:0 bits setting. Note that the FOC2A bit is implemented as a strobe. Therefore it is the
value present in the COM2A1:0 bits that determines the effect of the forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using

OCR2A as TOP.

The FOC2A bit is always read as zero.

 Bit6, 3 -WGM21:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP)

25-10-17

13

~ Harder Exercises

* Decrement the current speed (SPD) by 1. Don't
decrement if already O.

e Write a function to make it seem like an LED is
bouncing back and forth.

* Write a function that does:
If button N Is pressed, turn on LEDs O - N.

25-10-17 14

E

C-Bit Fields

25-10-17 15

C Bit-Fields

* Declare fields in a struct with sizes (# bits)
— Compiler pushes fields together to conserve space.

* EX:
Represent a colour with 8 bits each for red, green,
blue; and 1 bit for transparent:

struct colour_s {
unsigned int red . 8
unsigned int green . 8;
. 8
1

unsigned int blue
unsigned int transparent

%

- Entire struct needs only one unsigned int (32-bits)

25-10-17 16

Bit-fleld Detalls

* Access fields by name:
— struct colour_s border = {Oxff, Oxff, 0x00, 1}
printf(“Red %d\n”, border.red);

- border.transparent = 1;

When assigning a value, ensure you don't have
more bits that expected

 WARNING: Code IS non-portable: Muét
L. ~ retest on new hardware or
The order the fields get packed.. compiler.

_ - : - OK for platform specific
s the first field in the LSB, or hardware access: poor for

IS the last field in the LSB? applications needing cross-
platform binary data
compatibility

25-10-17 17

STAT Example

struct stat_s { Unnamed fields take up unused
unsigned int flash: 1; space to line fields up as required

unsigned int - 4: /| Unused bits .. R
unsigned int spd : 3;
4
4

unsigned int btn
unsigned int led

E — /MUS’[test to ensure fields don:t\t’i“ \

: 1 need to be..

#define STAT_ADDR 0xC800153C
struct stat_s *pSTAT = (struct stat_s *) STAT_ADDR;

—_— I

int main() {
pSTAT->flash = 1;
if (pSTAT->btn == 0x0F) {
pSTAT->spd += 2;
}

pSTAT->led = pSTAT->btn;
return O;

’25—10—17 18

