
Intro to Electronics

(Greatly abberivated)

Units

• Mega: 1,000,000

- Mega-ohms: $1,000,000\Omega = 1M\Omega$

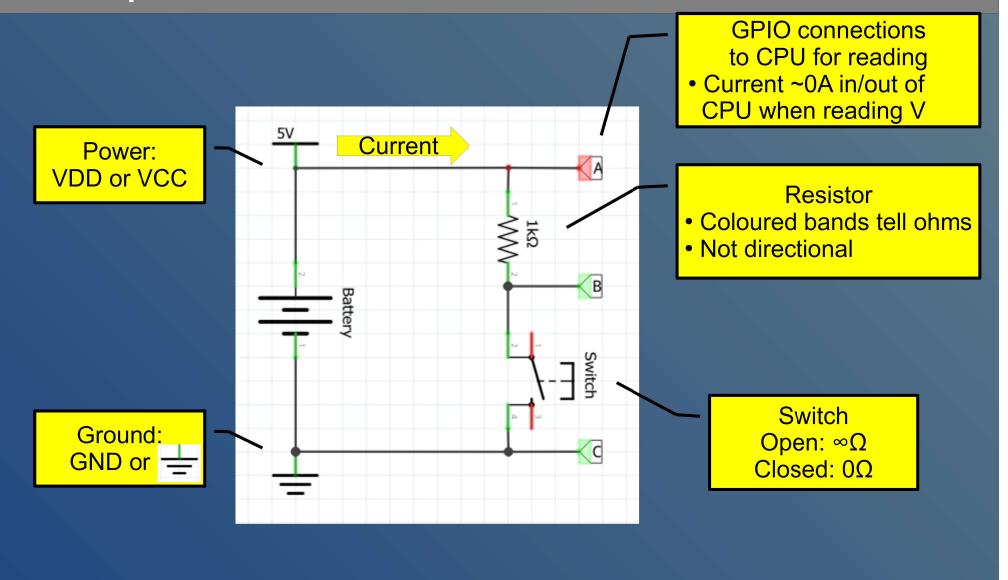
- Kilo-ohms: $1,000\Omega = 1k\Omega$

• Milli: 1/1,000

 $\overline{\text{Milliamps:}}$ 0.001A = 1 mA

- Millivolts: 0.100 V = 100 mV

Micro: 1/1,000,000


- Microamps: $1A = 1,000,000 \mu A$

- Microvolts: $1V = 1,000,000 \mu V$

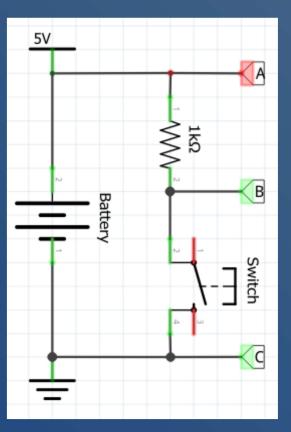
Circuits

Sample Circuit

Solving Circuits

Each components in circuit

. .

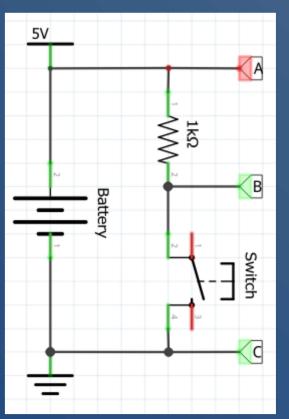

- Wires assumed to be 0Ω
- Sum of all voltages lost in circuit =...

_

- Usual approach to solving a single path circuit
 - 1. Find the voltage of the source
 - 2. Find resistance of the circuit
 - = sum resistances of each series component
 - 3. Solve current

Solving Circuits Examples

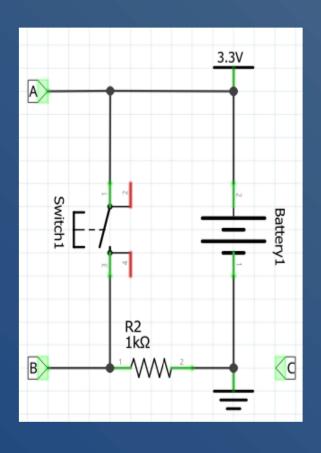
With switch open (not connected), solve:



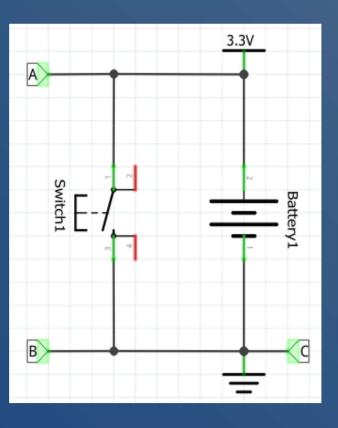
- Resistance of circuit

- Current through switch
- Current through resistor
- A's voltage
- B's voltage
- C's voltage

Solving Circuits Examples (cont)

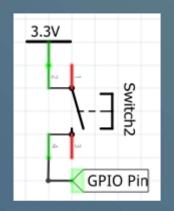

With switch closed (connected), solve:

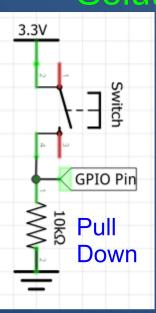
Resistance of circuit


- Current (through resistor or switch)
- A's voltage
- B's voltage
- C's voltage

Exercise #1

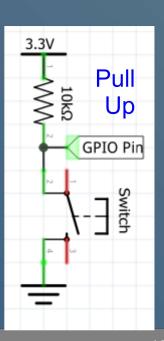
	Switch Closed	Switch Open
I through Resistor	3.3V / 1k = 3.3mA	0A
I through Switch	3.3mA	0A
V at 'A'	3.3V	3.3V
V at 'B'	3.3V 0V + Vr = 0V + Ir * Rr = 0 + 3.3mA *1000 = 3.3V	OV
V at 'C'	0V	OV


Exercise #2


	Switch Closed	Switch Open
⊺ through Switch		
V at 'A'		
V at 'B'		
V at 'C'		

Pull-up / Pull-down

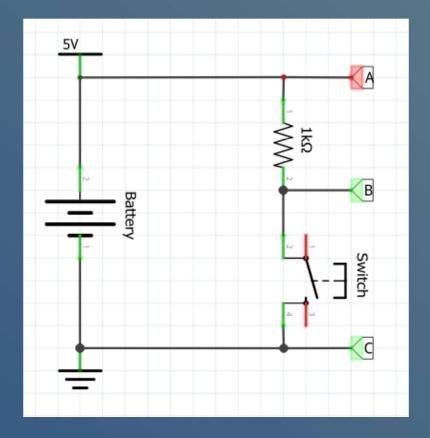
- What does 'GPIO Pin' read when:
 - switch closed? ...
 - switch open? ...



Solution

Pull-down resistor: ...

 Pull-up resistor: add large value resistor to 3.3v

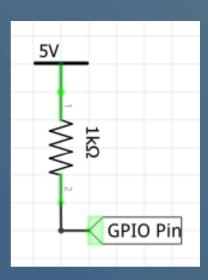

25-10-21

17

ABCD: Button

• Where should we connect the GPIO to read the switch?

- a) Read A: 1 when pressed, 0 when open
- b) Read A: 0 when pressed, 1 when open
- c) Read B: 1 when pressed, 0 when open
- d) Read B: 0 when pressed, 1 when open

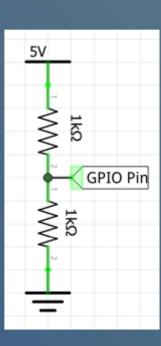


Exercise: Smoke

- If GPIO Pin is an input pin on the BYAI, what does this circuit do?
 - Assume 0A current into input GPIO

. .

-

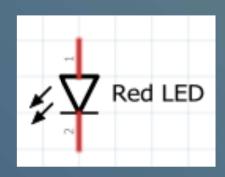

Exercise: Divider

What does GPIO Pin read?

• •

• •

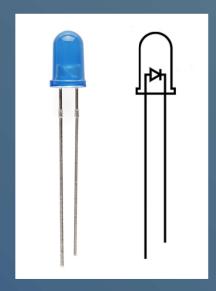
Intuition: ...

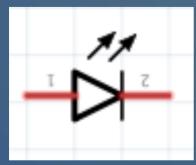


LED

LED = Light Emitting Diode

- LEDs require a current to turn on: the more current, the bright.
- Too much current: damage it.

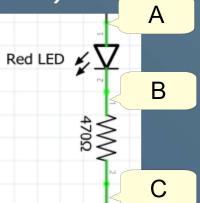



Details

- Diodes only allow current to flow one way: in direction of arrow.
- Don't wire an LED in backwards.
- We'll treat LEDs as a current device, not affecting V (LEDs have a voltage drop across them of ~2V)

LED wiring

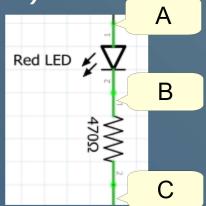
- LEDs must be wired in correct direction to turn on
 - Longer lead (wire) is + side (Anode)
 - Shorter lead (wire) is side (Cathode)
- In reverse, they block all current until voltage exceeds their maximum reverse voltage, at which point the LED could be damaged.



ABCD: LEDs

 What should be connected to make the LED turn on when the GPIO pin is a 1 (3.3V)?

- a) GPIO to A, GND to C
- b) GND to A, GPIO to C
- c) 3.3V to A, GND to C
- d) GPIO to A, GND to B



ABCD: LEDs

 What should be connected to make the LED turn on when the GPIO pin is a 0 (0V)?

- a) GPIO to A, GND to C
- b) GND to A, GPIO to C
- c) 3.3V to A, GND to C
- d) GPIO to A, GND to B

3.3V at A GPIO at C

Review Questions

- Suggested circuit drawing questions (try on your own time)
 - Draw a circuit which turns on an LED when you press a button.
 - Draw a circuit which turns on an LED when you set a GPIO pin to high.
 - Draw a circuit which turns on an LED when you set a GPIO pin to low.

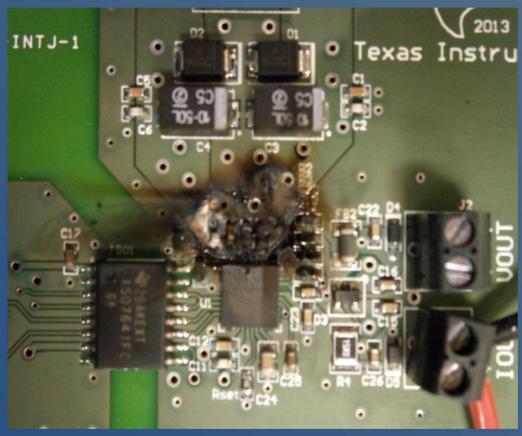
Breadboard

- Breadboard used to wire circuits without soldering
 - + and bars on both top and bottom
 - Columns of 5 slots all connected.

 Columns on top half not connected to columns on bottom half.

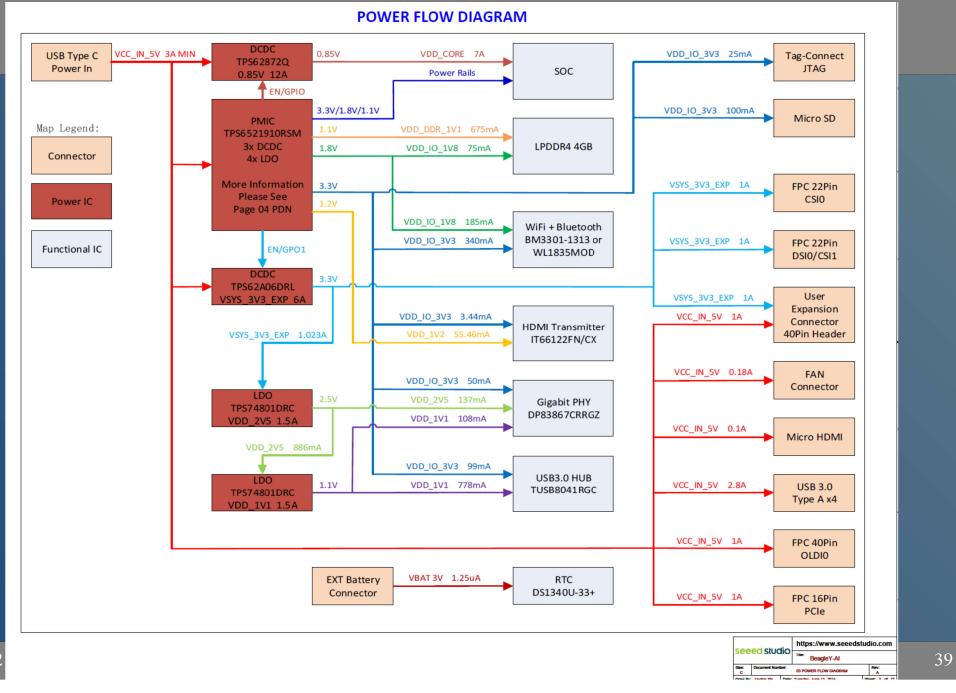
All 5 slots in this column are connected.

All 25 slots in this bar are connected. (not connected to top one)


Reading Button

```
brian@BeagleBone:~$ gpiofind GPI04
gpiochip1 38
brian@BeagleBone:~$ gpioget gpiochip1 38
0
brian@BeagleBone:~$ gpioget gpiochip1 38
1
Pressed
```

Power


- GPIO pins give +3.3V
 - Can source 9mA(as "Output" at 3.3V = on)
 - Can sink 5mA (as "Output" at 0V = off; current in)
- USB gives +5V
 - VDD_IN_5V is powered from USB directly
 - Note: You likely want to use the +3.3V pins for most things instead of the +5V

How to damage your board

How to fry your BeagleY-Al

- Draw too much current on header
 - total current from 3.3V >= 1000 mA
 total current from 5.0V >= 1000 mA
 - short circuit to ground anything with power (damage voltage regulator)
- Over-current GPIO pins
 - Can source 9mA (current out of pin when output at 3.3V)
 - Can sink 5mA (current into pin when output at 0V)
- Apply too much voltage to CPU pin
 - GPIO [tollerates 0v 3.3v]
 - A2D [tollerates -0.3v 3.6v]
- BeagleY-AI USB-C
 - Can use (draw) up to 3A from USB-C to power board.

Other Systems

Raspberry Pi

- may tolerate higher voltages if current is low; not so with BYAI
- Don't let GPIO go > 3.3V, even at low current

Arduinos run at 5V

 Many Arduino peripherals need level shifters to work with BYAI's 3.3V GPIO

12V Fans

It's 12V! Be careful! Use a relay to turn on/off

Motors

Need a motor driver chip to turn drive the motor

Tips

- 1) Draw out your circuit on paper before wiring it.
- 2) Wire your circuit with the power off.
- 3) Double check wiring before powering on!
 - Not as easy as "recompile" to fix HW errors.
- 4) If it does not work, don't just try things till it works.

Summary

- Ohm's Law: V = I * R
 - Solve a circuit by finding resistance across a voltage to solve the current.
- Components
 - Switches: Open or closed
 - LED: current turns on
 - Resistor
- Be mindful of HW limits: don't fry your board!