Linux (user space)
Debugging

=3 '
25-10-2 ENSC 351 Slides #8 © Dr. B. Fraser !

Topics

* How can we find memory problems?

* Cross debugging using GDB and VS Code
* Debugging after a crash with a core file

25-10-2 2

E

Tracing Memory:
Valgrind, ASan & mtrace

25-10-2 3

C's “Safety”

* C does no memory checking on any of:
- buffer overflows

- dangling pointers
- unfreed memory
- bad pointers

* Need to use extra tools to instrument your program.
— Instrumentation:

25-10-2 4

Valgrind

* Valgrind: a suit of debugging & profiling tools
— Runs your application in a virtual CPU,
doing translations for each instruction.

— Adds a significant performance penalty:
20 — 30 times slower.

* Detects memory errors:
- .. (not calling free())

- .. (use after free)
- Read/write outside of allocated block

* (Does not detect stack memory errors)

’25—10-2 5

Valgrind Install

 |nstall Valgrind on Target (requires internet access)
(byai) $ sudo apt update
(byai)$ sudo apt install valgrind

See debugging guide for details.
* Cross-compile your application with -g option.

* Run Valgrind:
(byai)$ valgrind ./mybadapp
(byai)$ valgrind --leak-check=full \
--show-reachable=yes ./mybadapp

25-10-2 6

Valgrind Demo

(byai)$ wvalgrind --leak-check=full --show-reachable=yes ./memleaker

normal program output...

==1503== HEAP SUMMARY:

==]1503== in use at exit: 57,344 bytes in 56 blocks

==1503== total heap usage: 57 allocs, 1 frees, 58,368 bytes allocated
==1503==

==1503== 57,344 bytes in 56 blocks are definitely lost in loss record 1 of 1
==1503== at 0x48348EC: malloc (vg replace malloc.c:263)

==1503== by 0x104E7: intToString (memleaker.c:16)

==1503== by 0x1052B: showConvert (memleaker.c:24)

==1503== by 0x10573: main (memleaker.c:36)

==1503==

==1503== LEAK SUMMARY:

==1503== definitely lost: 57,344 bytes in 56 blocks

==1503== indirectly lost: O bytes in 0 blocks

==1503== possibly lost: O bytes in 0 blocks

==1503== still reachable: 0 bytes in 0 blocks

==1503== suppressed: 0 bytes in 0 blocks

25-10-2 7

ABCD Memory Problems

* What is wrong with this code?

void foo(void)

{

int Xx;

int y = 10;

int* ptr = &x;

if (y == "' ") {

*ptr = 20;

}

printf("X is: %d\n", Xx);
¥

a) Bad pointer.

)
b) y is an int but compared to a char.
c) x may be undefined.
d) printf() uses incorrect type.

25-10-2

Valgrind Sample |

Demo this one.

(byai) $ valgrind ./memabuser |
- funWithVariables(): uninitialized memory

- funWithHeap(): overflow, double free
- funWithStack(): Misses error!
- funWithPointers(): Misses error!
(byai) $ valgrind --leak-check=full \
--show-reachable=yes ./memleaker2

— Output part:

==1561== 1 bytes in 1 blocks are definitely lost in loss record 1 of 11
==1561== at 0x48348EC: malloc (vg_replace_malloc.c:263)
==1561== by 0x10753: main (memleaker2.c:48)

25-10-2 9

ABCD: Memory Problems

* With a partner, decide what is wrong with the code?

— char *pMessage =
Use aiter free malloc(13 * sizeof(*pMessage));
— sprintf(pMessage, "Another test!");
Buffer overflow “(pMessage-1) = "\o':
- Non-null terminated prantf("%sin”, pMessage);
string int *pInt = malloc(42 * sizeof(*pInt));
_ int garbage = pInt[0];
— Null pointer pInt[0] = 1;
free(pInt);
- Double free pInt[2] = garbage;

_ free(pInt);
- Poor error handling ¢

a) Yes
b) No
c) Not sure

25-10-2 10

25-10-2

$ valgrind --leak-check=full --show-reachable=yes ./memabuser 2

==2906== Invalid write of size 1

==2906== at 0x492D324: vsprintf_internal (iovsprintf.c:98)
==2906== by 0x491221B: sprintf (sprintf.c:30)

==2906== by 0x10894F: funWithHeap (memabuser.c:25)

==2906== Address 0x4a6f48d is 0 bytes after a block of size 13 alloc'd
==2906==

==2906== Invalid write of size 1

==2906== at 0x10895C: funWithHeap (memabuser.c:26)

==2906== Address 0x4a6f47f is 1 bytes before a block of size 13 alloc'd
==2906==

==2906== Invalid read of size 1

==2906== at 0x488B2D4: Gl _strlen (vg_replace_strmem.c:495)
==2906== by 0x4916723: __ vfprintf_internal (vfprintf-process-arg.c:397)
==2906== by 0x490CD43: printf (printf.c:33)

==2906== by 0x10896F: funWithHeap (memabuser.c:27)

==2906== Address 0x4a6f48d is 0 bytes after a block of size 13 alloc'd
==2906==

'‘Another test!'

==2906== Invalid write of size 4

==2906== at 0x1089A8: funWithHeap (memabuser.c:34)

==2906== Address 0x4a6f4d8 is 8 bytes inside a block of size 168 free'd
==2906==

==2906== Invalid free() / delete / delete[] / realloc()

==2906== at 0x4887B40: free (vg_replace_malloc.c:872)

==2906== by 0x1089B3: funWithHeap (memabuser.c:35)

==2906== Address 0x4a6f4d0 is 0 bytes inside a block of size 168 free'd
==2906==

==2906== HEAP SUMMARY:

==2906== in use at exit: 13 bytes in 1 blocks

==2906== total heap usage: 3 allocs, 3 frees, 1,205 bytes allocated
==2906==

==2906== 13 bytes in 1 blocks are definitely lost in loss record 1 of 1

==2906==

11

Valgrind (cont)

* A well-behaved program should

- l.e., should have nothing “still reachable”
 Threads

- If you forget to call pthread_join() on a thread it leaves some
memory un-freed.

— Should join on all spawned threads or else get:

136 bytes in 1 blocks are possibly lost in loss record 1 of 1
at 0x4832C44: calloc (vg replace malloc.c:560)
by 0x40122CB: dl allocate tls (dl-tls.c:297)

by 0x4855C73: pthfead_create@@GLIBC_Z.4 (allocatestack.c:585)
by 0x108D7: main (demo thread.c:36)

* Can find some stack/globals problems with:
(byai)$ wvalgrind --tool=exp-sgcheck ./mybadapp
— Does not catch all errors.

’25—10—2 12

Argument for Freeing All Memory

 When your program ends, OS frees all memory;
Why bother ensuring you free the last of your memory?

- If running a remote system, may want to disable some
feature for a time

* Requirements for this class
Program must end with:

— 0 blocks definitely lost
— 0 blocks indirectly lost
— 0 blocks possibly lost

— 0 blocks still reachable

25-10-2 13

Valgrind Errors to Ignore

* Valgrind may find errors which originate in code libraries; you
may usually ignore these.

==832== 8 bytes in 1 blocks are still reachable in loss record 1 of 8
==832== at Ox4840AA8: calloc (vg replace malloc.c:623)
==832== by 0x489573B: snd config update r

(in /usr/lib/arm-linux-gnueabihf/libasound.so0.2.0.0)

* Turn off -pg flag to remove some warnings.
* |f getting errors with __udivmoddi4:

==852== Use of uninitialised wvalue of size 4
==852== at Ox12BB2: udivmoddi4 (in ./myGoodApp)

copy code to target and build on target with its gcc.

25-10-2 14

Timing Bugs

* “Heisenbug”

* Valgrind significantly changes the runtime
performance of your application
- May cause false timing related bugs related to
performance or driving real-time hardware

- Your code must be threadsafe:
even if the timing changes significantly, your code
must perform the correct computations and steps

25-10-2 15

Address Sanitizer (ASan)

 GCC and Clang support
Address Sanitizer:

e Similar to valgrind except ASan catches:

- It's fast! Use after free
Only x2 slowdown vs x20 Heap buffer overflow

Global buffer overflow

errors
_ o Use after return
- It requires compile-time Use after scope
change Initialization order bugs

(cannot be run on Memory leaks

precompiled binary)

25-10-2 16

ASan use

* Enable at compile time in CMakeLists.txt:

Enable address sanitizer

(Comment this out to make your code faster)
add_compile options(-fsanitize=address)
add_link_options(-fsanitize=address)

e Bad Code

void foo() {
int data[3];
for (int i = 0; 1 <= 3; i++) {
data[i] = 10;
printf("val: %d\n", data[i]);
¥
¥

’25—10—2 17

ASan Error Report

#0 0x55ba3bcaf30f 1in
#1 0x55ba3bcafd42e in

foo /home/brian/all-my-code/CMPT433-Code/04-Building/cmake starter/app/src/main.c:12
main /home/brian/all-my-code/CMPT433-Code/04-Building/cmake starter/app/src/main.c:54

#2 Ox71572f75ed09

in

libc start main

../csu/libc-start.c:308

#3 0x55ba3bcafl39 1

1 start (/home/brian/all-my-code/CMPT433-Code/04-Building/cmake starter/build/app/hel

Address Ox7ffd9117bd4c is located in stack of thread TO at offset 44 in frame
#0 0x55ba3bcaf25f in foo /home/brian/all-my-code/CMPT433-Code/04-Building/cmake starter/app/src/main.c:9

This frame has 1 object(s):
[32, 44) 'data' (line 10) <== Memory access at offset 44 overflows this variable
HINT: this may be a false positive if your program uses some custom stack unwind mechanism, swapcontext or vfq
(longjmp and C++ exceptions *are* supported)
SUMMARY: AddressSanitizer: stack-buffer-overflow /home/brian/all-my-code/CMPT433-Code/04-Building/cmake startsg

Shadow bytes around the address:

buggy

Addressable:

0x100032227750:
0x100032227760:
0x100032227770:
0x100032227780:
0x100032227790:
=>0x1000322277a0:
0x1000322277b0:
0x1000322277¢0:
0x1000322277d0:
0x1000322277e0:
0x100032227710:
Shadow byte legend (one

00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00

Partially addressable:

00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00

00
00
00
00
00

00
00
00
00
00

00
00
00
00
00

shadow byte

00

00
00
00
00
00

00
00
00
00
00

represents 8 application bytes):

00
00
00
00
00

00
00
00
00
00

00 00 0O
00 00 0O
00 00 0O
00 00 0O
00 00 00
00[04]

00 00 00O
00 00 00
00 00 0O
00 00 0O
00 00 00

01 02 03 04 05 06 07

00
00
00
00
00

00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00

mtrace

 If Valgrind's overhead is too high, can use mtrace:

* Usage:
- |In C code:
#include <mcheck.h>

void main () {

mtrace () ; // Call to start trace; can be anywhere

// Rest of your code...

}
- On target, set environment variables for trace

— Run the program (writes log file)
— Analyze results (on host or target)

25-10-2 19

mtrace example

(byai)$ export MALLOC TRACE=/tmp/mallocTrace.txt
(byai) $ export LD PRELOAD=/usr/lib/aarch64-linux-gnu/libc malloc_debug.so

(byai)$./memleaker
program's normal operation....

(byai)$ mtrace ./memleaker ../mallocTrace.txt
Memory not freed:

Address Size Caller
0x0000aaaaf959£f£8b0 O0x64 at memleaker.c:38
0x0000aaaaf959£920 0x400 at memleaker.c:16
0x0000aaaaf959£d30 0x400 at memleaker.c:16

25-10-2 20

GDB

25-10-2

21

GDB & Debug Symbols

 GDB: GNU debugger
— Able to read structure of an executable and interactively
step through it.

“Symbols” includes:
* Symbol names: function, variables, parameters
* Symbol types: return, variable, parameter types
* File & line numbers for each instruction.
e Build app with debug symbols:

- GCC: Use -g option:
aarch64-linux-gnu-gcc -g -std=c99 foo.c -o foo

25-10-2 22

The Big Picture

Host

Graphical Debugger
(VS Code / Eclipse)

GDB
(gdb-multiarch)

* On Target

|

|

Network

~J

Target
helloWorld
GDB Server
(gdbserve r)
Compiled

for ARM

(byai) $ gdbserver localhost:2001 helloWorld

e On Host

(host) $ gdb-multiarch -q helloWorld

’25—10—2

23

GDB Commands:

Connect:

View Source...
Breakpoints:..

Stepping:

Functions:

Quit:

target remote 192.168.7.2:2001

break main, break test.c:7

run, continue
step (1nto), next (over)

print <expr>

info args, info local,

quit

’25—10—2

| Demo badmath.c24

VS Code Debugging

* See the Debugging guide for step-by-step on how to
setup VS Code (and Eclipse) for cross-debugging.

25-10-2 I Demo VS Code cross debugging badmath.c 25

E

Debugging after a crash:
Core Dumps

25-10-2 26

Core Dump

* When a process hits a runtime error,

Linux can store the complete process state to a core file
— Enable core file generation:
(byai)$ ulimit -c unlimited
(byai)$ ulimit -a # Display's limit

— User can generate core file and send it to developers for later
debugging.

25-10-2 27

Debugging with Core

 Run program on target to generate core file:
(byai)$./segfaulter

- When program crashes, it creates a core flle n current
directory.

" May need to run

* Copy to NFS (if not there already) in Amp ifcore fl
is O bytes.

chhmod a+r on
core if cannot

* On host, open core in cross-debugger: ~ read on host
(host)$ cd ~/cmptd433/public/ — /

(host) $ gdb-multiarch ./segfaulter core

25-10-2 I Demo: segfaulter.c 28

Stripping Symbols

* Debug symbols help you debug a program.

* However, they:
- Make the binary bigger

- Give away information about your program.
e Can remove the debug symbols after compile:
(host) $ cp myApp myApp2
(host)$ aarch64-linux-gnu-strip myApp2
- Copy myApp2 to target (it's smaller)!

- When debugging core files generated by a stripped
MyApp2 on target, can use un-stripped myApp with
symbols on host.

25-10-2 29

ABCD: Crash Debugging

* Which of the following tools would not be useful at
debugging a program crash (suspected bad pointer)?

a) valgrind

b) core file

c) mtrace

d) ASan (address sanitizer)

25-10-2 30

Summary

* Tracing memory:
— Valgrind for a deep check on memory use

- mtrace for an efficient check on dynamic allocation

* GDB:
- target runs gdbserver

— host runs gdb-multiarch

« GDB Commands:
- target remote, list, info b, b main, continue, bt, step, next, info
args, up, down, quit

 Can debug in text or via an IDE
* Debug after a crash with a core file
e Strip a binary to remove symbols

’25—10—2 31

