Linux (user space)
Debugging

ey

25102 ENSC 351 Slides #8 © Dr. B. Fraser |

Topics

* How can we find memory problems?
* Cross debugging using GDB and VS Code
* Debugging after a crash with a core file

25-10-2 2

Tracing Memory:
Valgrind, ASan & mtrace

25-10-2 3

C's “Safety”

- buffer overflows

- dangling pointers
- unfreed memory
- bad pointers

* Need to use extra tools to instrument your program.
— Instrumentation:

25-10-2 4

Valgrind

. a suit of debugging & profiling tools
- Runs your application in a virtual CPU,
doing translations for each instruction.

— Adds a significant performance penalty:
20 — 30 times slower.

i (not calling free())
3 (use after free)
- Read/write outside of allocated block

* (Does not detect stack memory errors)

25-10-2 5

Valgrind Install

. (requires internet access)
(byai) S sudo apt update
(byai) $ sudo apt install wvalgrind

See debugging guide for detalls.
* Cross-compile your application with -g option.

(byai)$ wvalgrind ./mybadapp
(byai)$ valgrind --leak-check=full \
--show-reachable=yes ./mybadapp

25-10-2)

Valgrind Demo

(byai) $ valgrind --leak-check=full --show-reachable=yes ./memleaker
normal program output...

==1503== HEAP SUMMARY:

==1503== in use at exit: 57,344 bytes in 56 blocks

==1503== total heap usage: 57 allocs, 1 frees, 58,368 bytes allocated
== |l

==1503== 57,344 bytes in 56 blocks are definitely lost in loss record 1 of 1
==1503== at 0x48348EC: malloc (vg replace malloc.c:263)

==1503== by 0x104E7: intToString (memleaker.c:16)

==1503== by 0x1052B: showConvert (memleaker.c:24)

==1503== by 0x10573: main (memleaker.c:36)

==1503==

==1503== LEAK SUMMARY:

==1503== definitely lost: 57,344 bytes in 56 blocks

==1503== indirectly lost: O bytes in 0 blocks

==1503== possibly lost: 0 bytes in 0 blocks

==1503== still reachable: 0 bytes in 0 blocks

==1503== suppressed: 0 bytes in 0 blocks

25-10-2 7

ABCD Memory Problems

* What is wrong with this code?

void foo(void)

L
int Xx;
int y = 10;
int* ptr = &x;

if (y =="'"){
*ptr = 20;
b

printf ("X is: %d\n", Xx);

a) Bad pointer.

b) y is an int but compared to a char.
c) x may be undefined.

d) printf() uses incorrect type.

Valgrind Sample

(byai) $ valgrind ./memabuser

- . uninitialized memory
N . overflow, double free
N . Misses error!
> . Misses error!
(byai) $ valgrind --leak-check=full \
--show-reachable=yes ./memleaker2

- Output part:

==1561== 1 bytes in 1 blocks are definitely lost in loss record 1 of 11
==1561== at 0x48348EC: malloc (vg_replace malloc.c:263)
==1561== by 0x10753: main (memleaker2.c:48)

25-10-2 9

ABCD: Memory Problems

* With a partner, decide what is wrong with the code?

_ char *pMessage =
Use after iree malloc(13 * sizeof(*pMessage));
— sprintf(pMessage, "Another test!");
Buffer overflow *(pMessage.1) = \@"';
- Non-null terminated prantf(™sin”, pMessage);
string int *pInt = malloc(42 * sizeof(*pInt));
_ int garbage = pInt[0];
— Null pointer pInt[0] = 1;
free(pInt);
- Double free pInt[2] = garbage;

free(pInt);
- Poor error handling

a) Yes
b) No
c) Not sure

25-10-2 10

25-10-2

$ valgrind --leak-check=full --show-reachable=yes ./memabuser 2

==2906== Invalid write of size 1

==2906== at 0x492D324: vsprintf_internal (iovsprintf.c:98)
==2906== by 0x491221B: sprintf (sprintf.c:30)

==2906== by 0x10894F: funWithHeap (memabuser.c:25)

==2906== Address 0x4a6f48d is 0 bytes after a block of size 13 alloc'd
==2906==

==2906== Invalid write of size 1

==2906== at 0x10895C: funWithHeap (memabuser.c:26)

==2906== Address 0x4a6f47f is 1 bytes before a block of size 13 alloc'd
==2906==

==2906== Invalid read of size 1

==2906== at 0x488B2D4: Gl _strlen (vg_replace_strmem.c:495)
==2906== by 0x4916723: __ vfprintf_internal (vfprintf-process-arg.c:397)
==2906== by 0x490CD43: printf (printf.c:33)

==2906== by 0x10896F: funWithHeap (memabuser.c:27)

==2906== Address 0x4a6f48d is 0 bytes after a block of size 13 alloc'd
==2906==

'‘Another test!'

==2906== Invalid write of size 4

==2906== at 0x1089A8: funWithHeap (memabuser.c:34)

==2906== Address 0x4a6f4d8 is 8 bytes inside a block of size 168 free'd
==2906==

==2906== Invalid free() / delete / delete[] / realloc()

==2906== at 0x4887B40: free (vg_replace_malloc.c:872)

==2906== by 0x1089B3: funWithHeap (memabuser.c:35)

==2906== Address 0x4a6f4d0 is 0 bytes inside a block of size 168 free'd
==2906==

==2906== HEAP SUMMARY:

==2906== in use at exit: 13 bytes in 1 blocks

==2906== total heap usage: 3 allocs, 3 frees, 1,205 bytes allocated
==2906==

==2906== 13 bytes in 1 blocks are definitely lost in loss record 1 of 1

==2906==

11

Valgrind (cont)

~ should have nothing “still reachable”

- If you forget to call pthread join() on a thread it leaves some
memory un-freed.

— Should join on all spawned threads or else get:

136 bytes in 1 blocks are possibly lost in loss record 1 of 1
at 0x4832C44: calloc (vg replace malloc.c:5660)

by 0x40122CB: dl allocate tls (dl-tls.c:297)

by 0x4855C73: pthread create@@GLIBC 2.4 (allocatestack.c:585)
by 0x108D7: main (demo thread.c:36)

* Can find some stack/globals problems with:
(byai)$ walgrind --tool=exp-sgcheck ./mybadapp

— Does not catch all errors.

25-10-2 12

Argument for Freeing All Memory

Why bother ensuring you free the last of your memory?

- If running a remote system, may want to disable some
feature for a time

Program must end with:
— 0 blocks definitely lost

- 0 blocks indirectly lost T
— 0 blocks possibly lost :’
- 0 blocks still reachable 1Y S

25-10-2 13

Valgrind Errors to Ignore

. you
may usually ignore these.

==832== 8 bytes in 1 blocks are still reachable in loss record 1 of 8
e 52— — at O0x4840AA8: calloc (vg replace malloc.c:623)
==832== by 0x489573B: snd config update r

(in /usr/lib/arm-linux-gnueabihf/libasound.so0.2.0.0)

* Turn off -pg flag to remove some warnings.

==852== Use of uninitialised value of size 4
==852== at 0x12BB2: udivmoddi4 (in ./myGoodApp)

copy code to target and build on target with its gcc.

25-10-2 14

Timing Bugs

— May cause false timing related bugs related to
performance or driving real-time hardware

— Your code must be threadsafe:
even If the timing changes significantly, your code
must perform the correct computations and steps

25-10-2 15

Address Sanitizer (ASan)

It's fast!
Only x2 slowdown vs x20

It checks more types of
errors

It requires compile-time
change

(cannot be run on
precompiled binary)

ASan catches:

Use after free

Heap buffer overflow
Stack buffer overflow
Global buffer overflow
Use after return

Use after scope
Initialization order bugs
Memory leaks

16

ASan use

* Enable at compile time in CMakeLlists.txt:

Enable address sanitizer
(Comment this out to make your code faster)

add_compile options(-fsanitize=address)
add_link_options(-fsanitize=address)

e Bad Code

void foo() {
int data[3];
for (int i = 0; 1 <= 3; i++) {
data[i] = 10;
printf("val: %d\n", data[i]);
}
}

25-10-2 17

ASan Error Report

#0 0x55ba3bcaf30f in foo /home/brian/all-my-code/CMPT433-Code/04-Building/cmake starter/app/src/main.c:12
#1 0x55ba3bcafd42e in main /home/brian/all-my-code/CMPT433-Code/04-Building/cmake starter/app/src/main.c:5
#2 0x7f572f75ed09 in libc start main ../csu/libc-start.c:308

3 0x55ba3bcafl39 in start (/home/brian/all-my-code/CMPT433-Code/04-Building/cmake starter/build/app/hel

Address 0x7ffd9117bd4c is located in stack of thread T0 at offset 44 in frame
#0 0x55ba3bcaf25f in foo /home/brian/all-my-code/CMPT433-Code/04-Building/cmake starter/app/src/main.c:9

This frame has 1 object(s):
[32, 44) 'data' (line 10) <== Memory access at offset 44 overflows this variable
HINT: this may be a false positive if your program uses some custom stack unwind mechanism, swapcontext or vf
(longjmp and C++ exceptions *are* supported)
SUMMARY: AddressSanitizer: stack-buffer-overflow /home/brian/all-my-code/CMPT433-Code/04-Building/cmake start
Shadow bytes around the buggy address:
0x100032227750: 00 00 0O 00 00 00 OO 00 00 OGO 00 00 GO 00 00 00
0x100032227760: 00 00 00 00 00 OO0 00 OO 00 OO 00 OO 00 0O 00 0O
0x100032227770: 00 00 00 00 0O GO 0O GO OO 6O 6O 60 60 60 00 00
0x100032227780: 00 00 00 00 00 00 00 0O 0O OO OO OO OO OO0 00 00
0x100032227790: 00 00 00 00 0O GO GO GO 0O 6O 60 60 60 00 00 00
=>0x1000322277a0: 00 00 00 00 00[04] 00 00 00 00
0x1000322277b0: 00 00 00 00 00 0O OGO O 00 00 00 00 00 00 00 00
0x1000322277c0: 00 00 00 00 0O GO 0O GO OO 6O 6O 60 60 00 00 00
0x1000322277d0: 00 00 00 00 00 0O OO OO 00 00 00 00 00 00 00 00
0x1000322277e0: 00 00 00 0O 0O GO GO GO OO OO 6O 60 00 00 00 00
0x1000322277f0: 00 00 00 00 0O GO OGO GO OO 6O 6O 6O 60 60 00 00
Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Partially addressable: 01 02 03 04 05 06 07

mtrace
 If Valgrind's overhead is too high, can use mtrace:

- In C code:
#include <mcheck.h>
void main() {
mtrace () ;

}
- On target, set environment variables for trace

- Run the program (writes log file)
— Analyze results (on host or target)

19

25-10-2

mtrace example

(byai) $ MALLOC TRACE=/tmp/mallocTrace.txt
(byai) $ LD PRELOAD=/usr/lib/aarch64-linux-gnu/libc malloc_debug.so

(byai)$./memleaker
program's normal operation....

(byai) $./memleaker ../mallocTrace.txt
Memory not freed:

Address Size Caller
0x0000aaaaf959£8b0 Oxo64 at memleaker.c:38
0x0000aaaaf959£920 0x400 at memleaker.c:16
0x0000aaaatf959£d30 0x400 at memleaker.c:16

25-10-2 20

GDB

25-10-2 21

GDB & Debug Symbols

— Able to read structure of an executable and interactively
step through it.

“Symbols” includes:
* Symbol names: function, variables, parameters
* Symbol types: return, variable, parameter types
* File & line numbers for each instruction.

- GCC: Use -g option:
aarch64-linux-gnu-gcc -g -std=c99 foo.c -o foo

25-10-2 22

The Big Picture

Host Target

Graphical Debugger
(VS Code / Eclipse) helloWorld

Network
| Compiled
for ARM
* On Target
(byai) $ gdbserver localhost:2001 helloWorld
* On Host

(host) $ gdb-multiarch -q helloWorld

25-10-2 23

GDB Commands:

. target remote 192.168.7.2:2001

break main, break test.c:7

o run, continue
step (i1nto), next (over)

print <expr>

o info args, info local,

. quit

25-10-2 | Demo badmath.c24

VS Code Debugging

* See the Debugging guide for step-by-step on how to
setup VS Code (and Eclipse) for cross-debugging.

25-10-2 I Demo VS Code cross debugging badmath.c 25

Debugging after a crash:
Core Dumps

25-10-2 26

Core Dump

Linux can store the complete process state to a core file
— Enable core file generation:
(byai)$ ulimit -c unlimited
(byai)$ ulimit -a # Display's limit

— User can generate core file and send it to developers for later
debugging.

25-10-2 27

Debugging with Core

(byai)$./segfaulter

- When program crashes, it creates a core file in current
directory.

May need to run

* Copy to NFS (if not there already) in fmp if core fi
is O bytes.

chhmod a+r on
core if cannot

* On host, open core in cross-debugger: read on host.
(host)$ ed ~/cmptd33/public/

(host) $ gdb-multiarch ./segfaulter core

25-10-2 I Demo: segfaulter.c 28

Stripping Symbols

* Debug symbols help you debug a program.

- Make the binary bigger
- Give away information about your program.

(host)$ cp myApp myApp2
(host) $ aarch64-linux-gnu-strip myApp2
- Copy myApp2 to target (it's smaller)!

- When debugging core files generated by a stripped
MyApp2 on target, can use un-stripped myApp with
symbols on host.

25-10-2 29

ABCD: Crash Debugging

* Which of the following tools would not be useful at
debugging a program crash (suspected bad pointer)?

a) valgrind
b) core file

c) mtrace
d) ASan (address sanitizer)

25-10-2 30

Summary

- Valgrind for a deep check on memory use
- mtrace for an efficient check on dynamic allocation

- target runs gdbserver
— host runs gdb-multiarch

- target remote, list, info b, b main, continue, bt, step, next, info
args, up, down, quit

* Can debug in text or via an IDE
* Debug after a crash with a core file
e Strip a binary to remove symbols

25-10-2 31

