ENSC 351
Process Synchronization

Dr. Matthew Stewart

Slides for course derived from
Dr. Mohamed Hefeeda's slides

Updated by Dr. Brian Fraser

Objectives

Jd Understand

“* The Critical-Section Problem
“* Practical solution to the critical section problem

1 Definition:

s Atomic instruction:

(i.e., cannot be partially completed)

Consumer-Producer Problem

4 Classic example of process coordination
4 Two processes sharing a buffer

4 Producer: places items into the buffer
“* Must wait if the buffer is full

[Consumer: takes items from the buffer
“* Must wait if buffer is empty

 Solution:

< Keep a counter on number of items in the buffer

/l Shared

int count = 0: Producer/Consumer Threads
int buffer[BUFFER_SIZE];

Producer Thread Consumer Thread
intin=0; int out = 0;
while (true) { while (true) {
Il Produce a new item Il Get next item to process
item=...; while (count == 0)

; 1/ do nothing
/| Store item into buffer

while (count == BUFFER_SIZE) nextltem = bufferout];
: 1/ do nothing out = (out + 1) % BUFFER_SIZE;
count--;
buffer[in] = item;
in = (in + 1) % BUFFER_SIZE; /| Consume nextltem
count++;
} }

What can go wrong with this solution?

Race Condition

d count++ could be implemented as d count-- could be implemented as
“* register1 = count “ register2 = count
“ register1 =register1 + 1 ** register2 = register2 - 1
< count =register1 count = register2

D)

L0

O/
0’0

d Consider this execution interleaving with “count = 5” initially:

Inst # Producer Consumer

S0 | regl = count
Sl regl=regl+1

S2 reg2 = count
S3 reg2 =reg2 —1
S4 | count =regl

S5 count = reg2

.. What other final values in count are possible
depending on how these 6 instructions are ordered?

Race Condition

d Race Condition: when multiple processes..
and the result depends on the..

“* Data inconsistency may arise

 Solution idea

< Mark code segment that manipulates shared data
as a..

“ If a process is executing its critical section, no other
processes can execute their critical sections

d More formally, any method that solves the
Critical-Section Problem must satisfy three
requirements . <ex

1.

Critical-Section (CS) Problem

If process P, is executing in its critical section, then no
other processes can be executing in their critical sections

If no process is executing in its critical section and there
exist some processes that wish to enter their critical
section, then selection of the process that will enter the
critical section next cannot be postponed indefinitely

i\}lust limit the number of times other processes can enter
their critical sections after a process requested to enter
its critical section and before that request is granted
Assumptions

® Each process executes at a nonzero speed

® No restriction on the relative speed of the N processes

Solutions for CS Problem

d Disable interrupts during CS

“*Currently running code would

“*Only works on single CPU system:
* Other processors executing code could enter a CS

* Plus, every processor has its own interrupts:
don't want to disable interrupts system wide.

“*Drawback of disabling interrupts
(even on uniprocessor systems)

* Disabled interrupts makes system unresponsive:
for servicing interrupts.

d Hardware instructions provide low level test-and-set
primitives to prevent mutual exclusion of a CS.

Recap

d Processor Synchronization
“* Techniques to coordinate access to shared data
d Race condition

“* Multiple processes manipulating shared data and
result depends on execution order

d Critical section problem

“* Three requirements: mutual exclusion, progress,
bounded waiting

d Up next:
“* Semaphores
“* Some classical synchronization problems

Higher Level Synchronization:
Semaphores

10

Semaphores

dUsually provided by OS kernel

*** Much easier to use than hardware-based solutions

dSemaphore Sholds..

JdTwo standard operations to modify S:
“*wait()
“*signal()

JEach operation is indivisible (atomic)

11

Semaphore Operations

d If implemented in C, it would look like:

intS=1; I/l Resource available
void wait (int S) {
/| Busy wait for S>0, called a spinlock

while (S <=0) {

/| Do nothing; OK to interrupt here.
}
S--;

}

void signal(int S) {
S++;

}

4 In reality a process may block when waiting
instead of using a spinlock (busy-wait)

12

Semaphore Types and Usage

d Two types
% Counting semaphore: can be any integer value

< Binary semaphore: can be 0 or 1
Called a..

d Usage examples

“* Counting semaphore: Allow 4 concurrent radio
transmissions

“* Mutex: Allow at most 1 concurrent access to thruster
valve control

d Mutual exclusion (mutex)

Semaphore mutex; // Initialized to 1
wait (mutex);
Il Critical Section code here.
signhal (mutex);

13

Semaphore Usage (cont’d)

d..
myBar() in P2 should execute after myFoo() in P1
Process P1:
myFoo();
signal (sem);

Process P2:
wait (sem);
myBar();

 Control access to a resource with a

“*e.g., producer-consumer problem with finite
buffer

14

Semaphore Implementation

d Must guarantee that no two processes can
execute wait and signal on same semaphore at
same time

4 Thus, code in wait and signal becomes

and must be protected by:
* Disabling interrupts (uniprocessor systems only)
* Busy waiting or spinlocks (multiprocessor systems)

4 But why did this help?

“* Use semaphore to avoid spinlock, but need spinlock to
implement semaphore!

“* However, wait and signal are..
, SO a spinlock is not so bad.

“* Whereas an application may spend long (and unknown)
amount of time in its critical sections.

L)

o0

&

L)

L)

15

Deadlock and Starvation

d Deadlock - two or more processes are waiting indefinitely for..

d Let S and Q be two semaphores initialized to 1

Process O Process 1

wait(S); wait(Q);

wait(Q); wait(S);

... do some work... ... do some work...
signal(S); signal(Q);
signal(Q); signal(S);

O Starvation -..

“* A process may never be removed from the semaphore
queue in which it is suspended

Be Careful When Using Semaphores

d Some common programming problems:

< signal (mutex) wait (mutex)
* Multiple processes can access CS at the same time

< wait (mutex) ... wait (mutex)
* Processes may block for ever

% Forgetting wait (mutex) or signal (mutex)
* Deadlocks or prevents mutual exclusion.

“* Not identifying a required critical section
* No mutual exclusion: race cases.

17

Recap

d Semaphores
< wait() - Acquire / consume the resource
< signal() - Mark resource as available

d Mutex
* Lock & Unlock

O Race case:

“* The behaviour depends on the order tasks execute
and changes unexpectedly

O Critical section

< Managing access to shared data to prevent race
cases

d Up next:
. . L
“* Some classical synchronization problems
18

Classical Problems of Synchronization

4 Dining-Philosophers Problem
J Readers-Writers Problem

4 These problems are

“ abstractions that can be used to model many other
resource sharing problems

“ used to test newly proposed synchronization schemes

19

Dining-Philosophers Problem

O Philosophers alternate between
eating and thinking

< To eat, a philosopher needs..

(one on each side)

d Models: .
multiple processes (philosophers)
sharing multiple resources
(chopsticks)

O Write a program for each philosopher such that no
starvation/deadlock occurs

20

Dining-Philosophers Problem: Philosopher /

Firsttry: Wwhile (true) {
wait (chopstick[i]);
wait (chopstick[(i + 1) % 5]);
I/l now eat
signal (chopstick[(i + 1) % 5]);
signal (chopstick[i]);
/Il now think
}

d What can go wrong with this solution?
“* All philosophers..

d Solutions
% Only four diners
** Pick up both chopsticks at the same time

, 1,:MI philosophers pickup lower-numbered chopstick
irst

L)

o0

L)

o0

21

Readers-Writers Problem

4 Data shared by many concurrent processes

X —only read the data; no updates
X — can read and write
4 Problem
“ Allow.. to read at the same time.
“ But.. to write at a time (no

readers).

22

Readers-Writers Problem (cont’d)

J Some systems implement reader-writer locks
“ E.g., Linux, Pthreads API

“* A process can ask for a reader-write lock either in
read or write mode

d When would you use reader-writer locks?

< Applications where it is easy to identify readers only
and writers only processes

< Applications with more readers than writers

23

pthreads Synchronization

d POSIX-Threads
(pthreads) APl is
OS-independent

4 It provides:
“* mutex locks
“* semaphores
“* read-write locks
“* spin locks

#include <pthread.h>
pthread_mutex_t mutex;

pthread_mutex_init(&mutex, null);
pthread_mutex_lock(&mutex);
pthread_mutex_unlock(&mutex);

#include <semaphore.h>
sem_t sem;
sem_init(&sem, 0, 5);
sem_wait(&sem);

sem_post(&sem);
24

Summary

d Some classical synchronization problems
“* Dining-philosophers
“* Reader-writer

d pthreads

25

