
1

ENSC 351ENSC 351

Processes & ThreadsProcesses & Threads

Dr. Matthew StewartDr. Matthew Stewart

Slides for course derived fromSlides for course derived from
Dr. Mohamed Hefeeda's slidesDr. Mohamed Hefeeda's slides

Updated by Dr. Brian FraserUpdated by Dr. Brian Fraser

2

Objectives

Understand
 Process concept
 Process scheduling
 Creating and terminating processes
 Interprocess communication
 Threads vs Processes

3

Process Concept

 Process is..
 Process execution must progress in sequential fashion
 A program may exist on the hard drive, but is not a

process until being executed (usually from memory)

Note:
 Terms.. are interchangeable

 A process includes:
 program counter
 stack pointer
 data section (memory)
 code section (memory)

4

Process in Memory

static int global = 0;
int main (int arg)
{

float local;
char *ptr;

ptr = malloc(100);
local = 0;
local += 10*5;
…..
….
foo();
…. /* return addr */
….
return 0;

}

5

Process State

 As a process executes,..
 new:just created
 instructions are being executed
 process is waiting for some event to occur
 process is waiting for CPU
 terminated: process has finished execution

6

.. (PCB)

 OS maintains info about process in PCB
 Process state
 Program counter
 CPU registers
 CPU scheduling info
Memory-management info
 Accounting info
 I/O status info

 PCB used to..
 E.g., to switch CPU from one

process to another

 Typically, a large C structure in kernel
 Linux: struct task_struct

7

CPU Switch From Process to Process

 When switching from
P0 to P1 kernel will:
 Save state of P0

in PCB0
(in memory)

 Load state of P1
from PCB1
into registers

 State = values of the..

8

CPU Switch From Process to Process cont'd

 Switching between processes is called a
..

 Context-switch time is..
no useful work is done

 Switching time depends on hardware support
 Some systems (Sun UltraSPARC) provide multiple

register sets  very fast switching (just change a
pointer)

 Typical systems, few milliseconds for switching

9

Job Types

 Jobs (Processes) can be described as either:

 ..

• spends more time doing I/O than computations,
many short CPU bursts

• Often characteristic of interactive programs

• Example: GUI, word processor, IDE

 ..

• spends more time doing computations; long CPU
bursts

• Example: factoring a large prime (cryptography)

10

Scheduling: The Big Picture (cont’d)

Disk
Job started CPU sched.

11

Schedulers (cont’d)

 Short-term scheduler (or CPU scheduler)
 selects which process should be..

and allocates CPU to it
 Short-term scheduler is invoked..

(milliseconds)

• So must..

12

Scheduling Queues

 Processes migrate
among various queues

 ..
set of all processes in
the system

 ..
set of all processes
residing in main
memory, ready and
waiting to execute

 ..
set of processes waiting
for a specific I/O device

13

Process Lifetime

14

Process Creation: Unix Example

 Process creates another process (child) by
using fork system call
 Child is..
 Typically, child loads another program into its address

space using exec system call
 Parent waits for its children to terminate

15

..

..

C Program Forking Separate Process

int main()
{

/* fork another process */
pid_t pid = fork();

if (pid < 0) { /* error occurred */

fprintf (stderr, "fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp ("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for child to complete */
wait (NULL);
printf ("Child %d Completed", pid);
exit(0);

}
}

Fork returns:
< 0:
 0:
> 0:

Replace child with
new program.

16

Tree of processes on BeagleBone Green

17

Process Termination (Linux)

 Normal termination:..
Asks OS to delete the current process (itself)
 Last statement a process executes
 Process’ resources are de-allocated by OS
 Exit code (int) available to parent process via..

 Abnormal termination:..

 Terminate child process:..
Useful if:

• Child has exceeded allocated resources

• Task assigned to child is no longer required

18

Threads

19

Thread Definitions

 Thread is a basic unit of CPU utilization
 A sequence of instructions enclosed in a function

which..

 Process is a program in execution
 A process is composed of..

 Each thread has a thread control block (TCB)
 Program counter
 Register set, and
 Stack

 Threads of the same process share
 Code section
 Data section ..

OS resources such as open files and signals

Threads of a process..

20

Single and Multithreaded Processes

..

21

Why Multithreading?

 Responsiveness: one thread for
..

 Resource Sharing: similar requests handled by the same
code and use same files/resources

 Economy: threads are much cheaper to create/delete
than..

 Utilization of multiprocessors: single threaded-process
can NOT make use of multiple processors

 Examples of multithreaded applications?
 Web browsers: parallel downloads
 Web servers: handle multiple concurrent clients
 Word processors: spell check in the background
 …. Many others …

22

Cooperating Processes

 Cooperating process can affect the execution of
each other

Why processes cooperate?
 Information sharing
 Computation speed-up
Modularity, Convenience

 Interprocess Communication (IPC) methods
 Shared memory
Message passing

23

Threads & Shared Memory

 Threads inside a process share a memory space
 Therefore, they can just use pointers to reference

shared memory

Tread 1

Thread 2

Shared buffer
(array)

24

IPC: Shared Memory

 Processes communicate by
creating a shared place in memory
One process creates a shared

memory— shmget()
Other processes attach shared

memory to their own address space
— shmat()

 Then, shared memory is treated as
regular memory

 Synchronization is needed to prevent
concurrent access to shared memory
(conflicts)

25

IPC: Shared Memory

 Pros
 ..

(use at memory speed)
 Convenient to programmers

(just regular memory)

 Cons
Need to..

(tricky for distributed systems)

26

IPC: Message Passing

 If processes (or threads) P
and Q wish to communicate,
they need to:
 establish a communication
 exchange messages via a

pipe:
• send (message) – message

size fixed or variable
• receive (message)

27

IPC: Message Passing

 Pros
No conflict:

easy to exchange messages
especially in distributed systems

 Cons
Overhead (message headers)
 ..

• Sender must prepare messages;
receiver must process them.

• ..
sender  kernel  receiver
(several system calls)

28

IPC: Message Passing (cont’d)

 Synchronization: message passing is either
 ..

• send () has sender block until message is received
• receive () has receiver block until message is available

 ..
• send () has sender send message and continue
• receive () has receiver receive a valid message or null

 Buffering: Queue of messages attached to
communication channel
 Zero capacity – Sender must wait for receiver

(rendezvous)
 Bounded capacity – Sender must wait if link full
 Unbounded capacity – Sender never waits

29

Example: Linux Pipes

 Pipe:

Good for inter-thread and inter-process

communication.

Needed Functions:
 pipe() to create file descriptors for read and write

ends of pipe.
 fdopen() to open the pipe (from descriptor)
 fprintf() to write (or other functions)
 fgets() to read [blocking] (or other functions)
 close() to close the file descriptor.

30

Example: Linux Pipes code

int fds[2]; // File descriptors for two ends of pipe
pipe (fds); // Create a pipe.

// Writer: Convert the write file descriptor to a FILE object
FILE* streamW = fdopen (fds[1], "w");
fprintf (streamW, "Hello World of Pipes!\n");
fflush (streamW);
close (fds[1]);

This possibly in different process/thread:
// Reader: Convert read file descriptor to a FILE object.
FILE* streamR = fdopen (fds[0], "r");

// Read until end of the stream.
char buffer[1024];
while (!feof (streamR) && !ferror (streamR)

&& fgets (buffer, sizeof (buffer), streamR) != NULL) {
printf("%s", buffer);

}
close (fds[0]); demo_pipe.c

31

Summary

 A process is a program in execution
OS maintains process info in PCB
 Process State diagram
 Creating and terminating processes (fork)

 Process scheduling
 Long-, short-, and medium-term schedulers
 Scheduling queues

 Interprocess communication
 Shared memory
Message passing

 Threads
 Share memory between threads of a process
 Each thread executes independently

