U-Boot,
Cross Compiling,
Make, CMake
& Editors

25-09-09 ENSC 351 Slides #4 © Dr. B. Fraser !

Topics

1) What software components run on the board?
2) How can we build our software?
3) How can we edit files via just text console?

25-09-09 2

Software Components

Root File System (RFS):
Das U-Boot: Contains all...

Bootloader to...

s, ip, helloWorld

Root
File System

Time during Boot

Linux Kernel:
Core Linux kernel for process
control, memory, 10, scheduling.

25-09-09 3

Making a micro SD Card

— The micro SD (uSD) card
contains all software to
boot the board.

- Easy to configure your
settings (user name,
password, wifi, ...)

| had poor experiences under Windows;
S0 run on Linux (or VM in Windows)

25-09-09

BeagleBoard Imager v2.0.0

ﬁbeogleboad»org‘

BeagleBoard Operating Syste! m
| DEB

Storage
BEAGLEY-AI BEAGLEY-A IAN V6.1.X MINIMAL MULTI-READER -3

NEXT

uSD Contents

®
o :~$ mount | grep mmc
/dev/mmcblklp3 on / type ext4 (rw,noatime,e
/dev/mmcblklpl on /boot/firmware type vfat
Physical Mount File system
Partition Location type
(ext4 or vfat)
- BOOT
Contains config info for boot.
Readable by Windows/MacQOS.
Mounts on BYAI to /boot/firmware/
- rootfs
All files for root fs

25-09-09

brian@debian:/media/brian$ tree -L 2

extlinux

ID. txt

Image

initrd.img
k3-am67a-beagley-ai.dtb
overlays

services

sysconf - Copy.txt
sysconf.txt

System Volume Information
ti

tiboot3.bin

tispl.bin

u-boot.img

rootfs

bin -> usx/bin
boot

data

dev

etc

home

1ib -> usx/1lib
lost+found
media

mnt

opt

proc

root

run

sbin -> usx/sbin
sIv

iii

usrxr

var

Files in each partition 5

Configuring BYAI

° .r t t brian@debian:/media/brian$ cat BOOT/sysconf.txt
E;)/E;(:()'1 .)(# This file will be automatically evaluated and installed at next boot

— Read by Llnux On BYAI # time, and regenerated (to avoid leaking passwords and such information).
#

To force it to be evaluated immediately, you can run (as root):
at boot.

/usr/sbin/bbbio-set-sysconf

You can disable the file evaluation by disabling the bbbio-set-sysconf
service in systemd:

systemctl disable bbbio-set-sysconf

— Then program wipes the
file and reboots target.
(no password leak)

Comments (all portions of a line following a '#' character) are
ignored. This file is read line by line. Valid

configuration lines are of the form 'key=value'. Whitespace around
'key' and 'value' is ignored. This file will be _regenerated_ every
time it is evaluated.

We follow the convention to indent with one space comments, and
leave no space to indicate the line is an example that could be
uncommented.

* bb Iimager sets up this file
with all your custom
options about user name, SRR
password, and wifi. oot authorized key - se

#root_authorized_key=

L T SR SR R S

N sword for the root user (not used in ubuntu)

an authorized key for a root ssh login (not used

user_name - Set a user ng
#user_name=beagle

e for the user (1000)

25-09-09

Servers & Directories

.C, .h, filelists.txt, makefile
Suggestion: Put this into GitHub!

- Holds files to...

— Unprotected by passwords!
Only for compiled code.

P
. 5 | .
$HOME/ensc351/work D=0 ‘
~ $HOME/ensc351/public mm— _—

Host Target

25-09-09 7

Cross-compile demo

(host)$ aarch64-linux-gnu-gcc hello.c -0 hello

(host)$ readelf -h hello

’ (one line each)
(byai)$ sudo mount -t nfs \
192.168.7.1:/home/matt/ensc351/public \
/mnt/remote

(byai)$ cd /mnt/remote/
(byai)$./hello

25-09-09 8

Boot, sysconf.txt

* What sequence of software runs during the target’s boot?

a) RFS > Kernel > UBoot
b) RFS > UBoot > Kernel
c) Kernel > UBoot > RFS
d) UBoot > Kernel > RFS

* What is the purpose of the sysconf.txt file?
a) Change Linux settings on the target.
b) Store Linux settings on the target.
c) Select a cross compiler targeting the BYAL.
d) Mount folders off micro SD card or target.

25-09-09

ABCD: Running from Target

* When SSH’d into the target, and having performed the
standard setup described above, which of the following will
run a cross-compiled helloworld app?

~/ensc351/public/myApps/helloworld

/media/rfs/myApps/helloworld
/mnt/remote/myApps/helloworld
/nfs/myApps/helloworld

25-09-09 10

Building Software With

Make & CMake

25-09-09 11

Makefile Basics

e Makefiles are

— Name your script Makefile

- Build a specific make-target with:..
(host) $

- Build default make-target with:
(host) $ make

(host) S make clean
(host) S make all

25-09-09 12

Simple Makefile

CC_C = aarch64-linux-gnu-gcc
CFLAGS = -Wall -g -std=c11 -D POSIX C_SOURCE=200809L -Werror

Define custom variables

for later use.

Targets of form
targetName:

app

Command(s) for this target.

$(CC_C) $(CFLAGS) helloWorld.c -o hello
cp hello ~/ensc351/public/myapps/

clean: clean is a common target
rm hello to remove all build files.

25-09-09 13

More Makefile

OUTFILE = helloWorld .

OUTDIR = $(HOME)/ensc351/public/myApps Setup output info once,
used twice.

CROSS_COMPILE = aarch64-linux-gnu-

CC_C = $(CROSS_COMPILE)gcc

CFLAGS = -Wall -g -std=c11 -D POSIX _C_SOURCE=200809L -Werror
help:

@echo "Build Hello World program for BeagleY-Al"

@echo "Targets include all, app, and clean."

all: app nestedDir done

app:
$(CC_C) $(CFLAGS) helloWorld.c -0 $(OUTDIR)/$(OUTFILE)
Is -| $(OUTDIR)/$(OUTFILE)

nestedDir:
make --directory=myNestedFolder

done:
@echo "Finished building application."

clean:
rm $(OUTDIR)/$(OUTFILE)

25-09-09 14

Compiler Flags

OUTFILE = factorial
OUTDIR = $(HOME)/ensc351/public/myApps

CROSS_ COMPILE = aarch64-linux-gnu-
CC_C = $(CROSS COMPILE)gcc
CFLAGS = -Wall -g -std=c11 -D POSIX_C_SOURCE=200809L -Werror

Warnings as
errors.

Debug
symbols

Explicit POSIX support
(for nanosleep() function).

25-09-09 15

CMake

* CMake =..
- Manage software build process

— Supports intelligently recompiling only the files that changed

Describe the build process: CMakelLists.txt

Can have multiple scripts:
one to build each part, one to combine, etc.

1) CMake processes CMakelLists.txt files to..
2) Use GNU Make to build the software using those Makefiles

25-09-09 16

Anatomy of CMakelLlists.txt

CMakelists.txt Required Elements

Minimum version. Run on the host. J Lowest CMake version

cmake_minimum_required(VERSION 3.18) that Wi"(builﬁl OltJ)r system
— on NOSt).

f T -

project(| key-value pair like:
SimpleCMakePrj VERSION 3.18
VERSION 1.0 o

DESCRIPTION "Simple demo of CMake"] Info about project:

2= Froject info " Ma ny commands ta ke

LANGUAGES C " name, version,
) ~ necessary compilers, etc.

Compiler options
set(CMAKE_C_STANDARD 11)
add_compile options(-Wall -Werror -Wpedantic -Wextra)

add_executable(simple_cmake Generate this executable

src/main.c (1starg)
src/funstuff.c ~using these source files

)

25-09-09

Running CMake - Terminal (for host)

(host)S cmake -S . -B build
(host)$ cmake --build build/

(host)S$ rm -r build/

brian@debian:~/all-my-code/CMPT433-Code/04-Building/simple_cmake$ cmake -S . -B build
-- The C compiler identification is GNU 12.2.0

Detecting C compiler ABI info

Detecting C compiler ABI info - done

Check for working C compiler: /usx/bin/cc - skipped

Detecting C compile features

Detecting C compile features - done

Configuring done

Generating done
-- Build files have been written to: /home/brian/all-my-code/CMPT433-Code/@4-Building/simple_cmake/build
brian@debian:~/all-my-code/CMPT433-Code/04-Building/simple_cmake$ cmake --build build/
[33%] Building C object CMakeFiles/simple_cmake.dir/src/main.c.o
[66%] Building C object CMakeFiles/simple_cmake.dir/sxc/funstuff.c.o
[100%] Linking C executable simple_cmake
[100%] Built target simple_cmake
brian@debian:~/all-my-code/CMPT433-Code/@4-Building/simple_cmake$ 1s build/simple_cmake
build/simple_cmake
brian@debian:~/all-my-code/CMPT433-Code/0@4-Building/simple_cmake$./build/simple_cmake

Q! = 1

1!

1
25-09-09 ok ;

31

Running CMake - VS Code’s Addon

 CMake Tool addon loaded with project with a CMakeLists.txt

CMAKE_STARTER

hal
giignore
CMakelists.txt

README.md

OUTLINE
TIMELINE

25-09-09

CMakelists.txt X o ---

1 # CMake Build Configuration for root of project
cmake_minimum_required(VERSION 3.18)
project(my_hello_world VERSION 1.@ DESCRIPTION "S

Compiler options (inherited by sub-folders)

set (CMAKE_C_STANDARD 11)
add_compile_options(-Wall -Werror -Wpedantic -Wex
add_compile_options(-fdiagnostics-color)

Enable address sanitizer

o you want to install the recommended 'CMake

(VI VIE

extension from Microsoft for CMakeLists.txt?

#
-1
w
-~
=
e »)

19

Running CMake - VS Code’s Addon

"A kit encompasses project-agnostic and configuration-agnostic
information about how to build code." !

- Specifies compiler toolchain and version

- We'll have one for native, one for cross-compile
(Use “unspecified” to build natively)

- Addon scans host system for available toolchains
|

[Scan for kits] Se
specified]

(12.2

5CC12.2.0 X

— Generate then i the <elocted taraet: 1ol
run makefiles: < . | v

- Run makefiles: Ctrl + Shift + B
Terminal > Configure Default Build Task... > CMake:Build

25-09-09 1. https://vector-of-bool.github.io/docs/vscode-cmake-tools/kits.html 20

CMake Starter Project
e D

V include ° hal/ N
badmath.h - Low-level modules with hardware
v e specific details.
badmath.c
main.c = app/
CMakelLists. txt - Organized into modules for better
<>, organization and encapsulation
Vv include / hal
button.h * bUlId/
v src - Created by CMake; temporary

button.c

CMakelists.txt

qitignore - One In root to control full build

CMakelLists. txt — One Iin each of hal/ and app/
README.md

25-09-09 21

ABCD: CMake

* What is a primary benefit of CMake?

a) It puts all build commands in one file.
b) Compiler independent make file.

c) Configures project options.

d) Removes need to install Make

* How does CMake support cross-compiling?

25-09-09

a) Uses toolchain file to select compiler.
b) Generates CMakeLists.txt from Makefile.

c) Writes all output into build/ folder.
d) Allows for a HAL layer.

Nano

e Nano Is a somewhat easier to use text editor.
$ nano myfileToEdit.txt

- Just type and edit text as you might expect.

— . Displays help. Ctrl+x to quit help.
= . Quit, asks you If you want to save.

25-09-09 23

Simple create/view a file

$ echo “Overwrite file with text” test.txt
$ “Adding this to end of file” test.txt

$ cat daFile
concatenate the file, outputs to stdout (terminal)

$ less daLongFile
shows page-by-page view of long file

$ tall -20 daLongFile
Shows last 20 lines of the file.

$ dmesg
displays kernel messages

- $dmesg | less
$ dmesg | tail -20

25-09-09 24

u To me vi is zen.
To use vi is to practice zen.
Every command is a koan.

Profound to the user, unintelligible to the
uninitiated.

You discover truth every time you use it.

-- Satish Reddy

25-09-09 26

vi — THE editor

° Vi IS a text based editor build into most *unix's

vi <filename>

* Used to move cursor, delete lines, save/quit.
* Press to get to this mode.

* Used to enter text.
* Press to get from command mode to here.

25-09-09 27

Command: in Command mode!

‘W - Arrow keys: may work.. may not
q - (do on board, not under Ubuntu).
'wq - Save and quit h - left
:q! - Quit without saving J - down

K - right

I - right (a lower-case L)
dd -
u - Undo *1* change

Ctrl+f - Forward a page

|
(not on target!). Ctrl+b - Back a page

yy - Copy current line
(yank)
P - Past copied line

Note: Case sensitive commands.
25-09-09 28

Summary

- UBoot --> Kernel --> Root File System

. automate building software.
- Create targets for different products/actions.

. . cross-platfrom meta build system
- Process defined in CMakeLists.txt

- Nano
— VI

25-09-09 29

