
1

ENSC 351ENSC 351

Processes & ThreadsProcesses & Threads

Dr. Brian FraserDr. Brian Fraser

Slides for course derived fromSlides for course derived from
Dr. Mohamed Hefeeda's slidesDr. Mohamed Hefeeda's slides



2

Objectives

 Understand 
 Process concept

 Process scheduling
 Creating and terminating  processes
 Interprocess communication
 Threads vs Processes



3

Process Concept

 Process is..
 Process execution must progress in sequential fashion
 A program may exist on the hard drive, but is not a process 

until being executed (usually from memory)

 Note:
 Terms..          are interchangeable

 A process includes:
 program counter 

 stack pointer
 data section (memory)
 code section (memory)



4

Process in Memory

static int global = 0;
int main (int arg) 
{

float  local;
char *ptr;

ptr = malloc(100);
local = 0;
local += 10*5;
…..
…. 
foo(); 
…. /* return addr */
….
return 0;

}



5

Process State

 As a process executes,..
 new: just created
  instructions are being executed
   process is waiting for some event to occur
  process is waiting for CPU
 terminated:  process has finished execution



6

.. (PCB)

 OS maintains info about process in PCB
 Process state
 Program counter
 CPU registers
 CPU scheduling info

 Memory-management info

 Accounting info
 I/O status info

 PCB used to..

 E.g., to switch CPU from one process to 
another

 Typically, a large C structure in kernel
 Linux: struct  task_struct



7

CPU Switch From Process to Process

 When switching from P
0
 

to P
1 
kernel will: 

 Save state of P0

in PCB0 
(in memory)

 Load state of P1  
from PCB1 
into registers 

 State = values of the.. 



8

CPU Switch From Process to Process cont'd

 Switching between processes is called a
..

 Context-switch time is..
no useful work is done

 Switching time depends on hardware support
 Some systems (Sun UltraSPARC) provide multiple 

register sets  very fast switching (just change a 
pointer)

 Typical systems, few milliseconds for switching 



9

Job Types

 Jobs (Processes) can be described as either:

 ..

• spends more time doing I/O than computations, many 
short CPU bursts

• Often characteristic of interactive programs

• Example: GUI, word processor, IDE

 ..

• spends more time doing computations; long CPU bursts

• Example: factoring a large prime (cryptography)



10

Scheduling: The Big Picture (cont’d)

Disk
Job started CPU sched.



11

Schedulers (cont’d)

 Short-term scheduler  (or CPU scheduler) 
 selects which process should be..

and allocates CPU to it

 Short-term scheduler is invoked..
(milliseconds) 

• So must..



12

Scheduling Queues

 Processes migrate among 
various queues

 ..
set of all processes in the 
system

 ..
set of all processes 
residing in main memory, 
ready and waiting to 
execute

 ..
set of processes waiting 
for a specific I/O device



13

Process Lifetime 



14

Process Creation: Unix Example

 Process creates another process (child) by using fork 
system call 
 Child is..

 Typically, child loads another program into its address 
space using exec system call

 Parent waits for its children to terminate



15

..

..

C Program Forking Separate Process

int main()
{

/* fork another process */
pid_t  pid = fork();  

if (pid < 0) { /* error occurred */

fprintf (stderr, "fork Failed");

exit(-1);
}
else if (pid == 0) { /* child process */

execlp ("/bin/ls", "ls", NULL);
}
else {         /* parent process */

/* parent will wait for child to complete */

wait (NULL);

printf ("Child %d Completed", pid);

exit(0);
}

}

Fork returns:
< 0:
   0:
> 0:

Replace child with
new program.



16

Tree of processes on BeagleBone Green



17

Process Termination (Linux)

 Normal termination:..
Asks OS to delete the current process (itself)
 Last statement a process executes
 Process’ resources are de-allocated by OS
 Exit code (int) available to parent process via..

 Abnormal termination:..

 Terminate child process:..
 Useful if:

• Child has exceeded allocated resources

• Task assigned to child is no longer required



18

Threads



19

Thread Definitions 

 Thread is a basic unit of CPU utilization
 A sequence of instructions enclosed in a function which..

 Process is a program in execution
 A process is composed of..

 Each thread has a thread control block (TCB)
 Program counter
 Register set, and  
 Stack

 Threads of the same process share
 Code section
 Data section                                              ..

 OS resources such as open files and signals

Threads of a process..



20

Single and Multithreaded Processes

..



21

Why Multithreading?

 Responsiveness: one thread for
..

 Resource Sharing: similar requests handled by the same 
code and use same files/resources

 Economy: threads are much cheaper to create/delete than..

 Utilization of multiprocessors: single threaded-process can 
NOT make use of multiple processors

 Examples of multithreaded applications?
 Web browsers: parallel downloads
 Web servers: handle multiple concurrent clients
 Word processors: spell check in the background
 …. Many others …  



22

Cooperating Processes

 Cooperating process can affect the execution of each 
other

 Why processes cooperate?
 Information sharing 
 Computation speed-up

 Modularity, Convenience

 Interprocess Communication (IPC) methods  
 Shared memory

 Message passing 



23

Threads & Shared Memory

 Threads inside a process share a memory space
 Therefore, they can just use pointers to reference shared 

memory

Tread 1

Thread 2

Shared buffer
(array)



24

IPC: Shared Memory

 Processes communicate by creating a 
shared place in memory
 One process creates a shared memory

— shmget()
 Other processes attach shared memory 

to their own address space — shmat() 
 Then, shared memory is treated as 

regular memory
 Synchronization is needed to prevent 

concurrent access to shared memory 
(conflicts)



25

IPC: Shared Memory

 Pros
 ..

(use at memory speed)
 Convenient to programmers

(just regular memory)

 Cons
 Need to..

(tricky for distributed systems)



26

IPC: Message Passing

 If processes (or threads) P and 
Q wish to communicate, they 
need to:
 establish a communication
 exchange messages via a pipe: 

• send (message) – message 
size fixed or variable 

• receive (message)



27

IPC: Message Passing

 Pros
 No conflict:

easy to exchange messages 
especially in distributed systems

 Cons
 Overhead (message headers)
 ..

• Sender must prepare messages; 
receiver must process them.

• ..
sender   kernel  receiver
(several system calls) 



28

IPC: Message Passing (cont’d)

 Synchronization: message passing is either 
 ..

• send () has sender block until message is received

• receive () has receiver block until message is available

 ..
• send () has sender send message and continue
• receive ()  has receiver receive a valid message or null

 Buffering: Queue of messages attached to  
communication channel 
 Zero capacity – Sender must wait for receiver 

(rendezvous)

 Bounded capacity – Sender must wait if link full
 Unbounded capacity – Sender never waits



29

Example: Linux Pipes

 Pipe:
  
 Good for inter-thread and inter-process communication.

 Needed Functions:
 pipe() to create file descriptors for read and write ends of 

pipe.
 fdopen() to open the pipe (from descriptor)
 fprintf() to write (or other functions)
 fgets() to read [blocking] (or other functions)
 close() to close the file descriptor.



30

Example: Linux Pipes code

int fds[2]; // File descriptors for two ends of pipe
pipe (fds); // Create a pipe. 

// Writer: Convert the write file descriptor to a FILE object
FILE* streamW = fdopen (fds[1], "w");
fprintf (streamW, "Hello World of Pipes!\n");
fflush (streamW);
close (fds[1]);

This possibly in different process/thread:
// Reader: Convert read file descriptor to a FILE object.
FILE* streamR = fdopen (fds[0], "r");

// Read until end of the stream.  
char buffer[1024];
while (!feof (streamR) && !ferror (streamR) 

&& fgets (buffer, sizeof (buffer), streamR) != NULL) { 
printf("%s", buffer);

}
close (fds[0]); demo_pipe.c



31

Summary

 A process is a program in execution 
 OS maintains process info in PCB 
 Process State diagram
 Creating and terminating  processes (fork)

 Process scheduling
 Long-, short-, and medium-term schedulers

 Scheduling queues

 Interprocess communication
 Shared memory

 Message passing

 Threads
 Share memory between threads of a process

 Each thread executes independently


	Slide 1
	Objectives
	Process Concept
	Process in Memory
	Process State
	Process Control Block (PCB)
	CPU Switch From Process to Process (Context Switch)
	Context Switch
	Job Types
	Scheduling: The Big Picture (cont’d)
	Schedulers (cont’d)
	Scheduling Queues
	Process Lifetime
	Process Creation: Unix Example
	C Program Forking Separate Process
	A tree of processes on a typical Solaris
	Process Termination
	Slide 18
	Thread Definitions
	Single and Multithreaded Processes
	Why Multithreading?
	Cooperating Processes
	Slide 23
	Slide 24
	IPC: Shared Memory
	Slide 26
	IPC: Message Passing
	IPC: Message Passing (cont’d)
	Slide 29
	Slide 30
	Summary

