
1

ENSC 351ENSC 351

Processes & ThreadsProcesses & Threads

Dr. Brian FraserDr. Brian Fraser

Slides for course derived fromSlides for course derived from
Dr. Mohamed Hefeeda's slidesDr. Mohamed Hefeeda's slides

2

Objectives

 Understand
 Process concept

 Process scheduling
 Creating and terminating processes
 Interprocess communication
 Threads vs Processes

3

Process Concept

 Process is..
 Process execution must progress in sequential fashion
 A program may exist on the hard drive, but is not a process

until being executed (usually from memory)

 Note:
 Terms.. are interchangeable

 A process includes:
 program counter

 stack pointer
 data section (memory)
 code section (memory)

4

Process in Memory

static int global = 0;
int main (int arg)
{

float local;
char *ptr;

ptr = malloc(100);
local = 0;
local += 10*5;
…..
….
foo();
…. /* return addr */
….
return 0;

}

5

Process State

 As a process executes,..
 new: just created
 instructions are being executed
 process is waiting for some event to occur
 process is waiting for CPU
 terminated: process has finished execution

6

.. (PCB)

 OS maintains info about process in PCB
 Process state
 Program counter
 CPU registers
 CPU scheduling info

 Memory-management info

 Accounting info
 I/O status info

 PCB used to..

 E.g., to switch CPU from one process to
another

 Typically, a large C structure in kernel
 Linux: struct task_struct

7

CPU Switch From Process to Process

 When switching from P
0

to P
1
kernel will:

 Save state of P0

in PCB0
(in memory)

 Load state of P1
from PCB1
into registers

 State = values of the..

8

CPU Switch From Process to Process cont'd

 Switching between processes is called a
..

 Context-switch time is..
no useful work is done

 Switching time depends on hardware support
 Some systems (Sun UltraSPARC) provide multiple

register sets very fast switching (just change a
pointer)

 Typical systems, few milliseconds for switching

9

Job Types

 Jobs (Processes) can be described as either:

 ..

• spends more time doing I/O than computations, many
short CPU bursts

• Often characteristic of interactive programs

• Example: GUI, word processor, IDE

 ..

• spends more time doing computations; long CPU bursts

• Example: factoring a large prime (cryptography)

10

Scheduling: The Big Picture (cont’d)

Disk
Job started CPU sched.

11

Schedulers (cont’d)

 Short-term scheduler (or CPU scheduler)
 selects which process should be..

and allocates CPU to it

 Short-term scheduler is invoked..
(milliseconds)

• So must..

12

Scheduling Queues

 Processes migrate among
various queues

 ..
set of all processes in the
system

 ..
set of all processes
residing in main memory,
ready and waiting to
execute

 ..
set of processes waiting
for a specific I/O device

13

Process Lifetime

14

Process Creation: Unix Example

 Process creates another process (child) by using fork
system call
 Child is..

 Typically, child loads another program into its address
space using exec system call

 Parent waits for its children to terminate

15

..

..

C Program Forking Separate Process

int main()
{

/* fork another process */
pid_t pid = fork();

if (pid < 0) { /* error occurred */

fprintf (stderr, "fork Failed");

exit(-1);
}
else if (pid == 0) { /* child process */

execlp ("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for child to complete */

wait (NULL);

printf ("Child %d Completed", pid);

exit(0);
}

}

Fork returns:
< 0:
 0:
> 0:

Replace child with
new program.

16

Tree of processes on BeagleBone Green

17

Process Termination (Linux)

 Normal termination:..
Asks OS to delete the current process (itself)
 Last statement a process executes
 Process’ resources are de-allocated by OS
 Exit code (int) available to parent process via..

 Abnormal termination:..

 Terminate child process:..
 Useful if:

• Child has exceeded allocated resources

• Task assigned to child is no longer required

18

Threads

19

Thread Definitions

 Thread is a basic unit of CPU utilization
 A sequence of instructions enclosed in a function which..

 Process is a program in execution
 A process is composed of..

 Each thread has a thread control block (TCB)
 Program counter
 Register set, and
 Stack

 Threads of the same process share
 Code section
 Data section ..

 OS resources such as open files and signals

Threads of a process..

20

Single and Multithreaded Processes

..

21

Why Multithreading?

 Responsiveness: one thread for
..

 Resource Sharing: similar requests handled by the same
code and use same files/resources

 Economy: threads are much cheaper to create/delete than..

 Utilization of multiprocessors: single threaded-process can
NOT make use of multiple processors

 Examples of multithreaded applications?
 Web browsers: parallel downloads
 Web servers: handle multiple concurrent clients
 Word processors: spell check in the background
 …. Many others …

22

Cooperating Processes

 Cooperating process can affect the execution of each
other

 Why processes cooperate?
 Information sharing
 Computation speed-up

 Modularity, Convenience

 Interprocess Communication (IPC) methods
 Shared memory

 Message passing

23

Threads & Shared Memory

 Threads inside a process share a memory space
 Therefore, they can just use pointers to reference shared

memory

Tread 1

Thread 2

Shared buffer
(array)

24

IPC: Shared Memory

 Processes communicate by creating a
shared place in memory
 One process creates a shared memory

— shmget()
 Other processes attach shared memory

to their own address space — shmat()
 Then, shared memory is treated as

regular memory
 Synchronization is needed to prevent

concurrent access to shared memory
(conflicts)

25

IPC: Shared Memory

 Pros
 ..

(use at memory speed)
 Convenient to programmers

(just regular memory)

 Cons
 Need to..

(tricky for distributed systems)

26

IPC: Message Passing

 If processes (or threads) P and
Q wish to communicate, they
need to:
 establish a communication
 exchange messages via a pipe:

• send (message) – message
size fixed or variable

• receive (message)

27

IPC: Message Passing

 Pros
 No conflict:

easy to exchange messages
especially in distributed systems

 Cons
 Overhead (message headers)
 ..

• Sender must prepare messages;
receiver must process them.

• ..
sender kernel receiver
(several system calls)

28

IPC: Message Passing (cont’d)

 Synchronization: message passing is either
 ..

• send () has sender block until message is received

• receive () has receiver block until message is available

 ..
• send () has sender send message and continue
• receive () has receiver receive a valid message or null

 Buffering: Queue of messages attached to
communication channel
 Zero capacity – Sender must wait for receiver

(rendezvous)

 Bounded capacity – Sender must wait if link full
 Unbounded capacity – Sender never waits

29

Example: Linux Pipes

 Pipe:

 Good for inter-thread and inter-process communication.

 Needed Functions:
 pipe() to create file descriptors for read and write ends of

pipe.
 fdopen() to open the pipe (from descriptor)
 fprintf() to write (or other functions)
 fgets() to read [blocking] (or other functions)
 close() to close the file descriptor.

30

Example: Linux Pipes code

int fds[2]; // File descriptors for two ends of pipe
pipe (fds); // Create a pipe.

// Writer: Convert the write file descriptor to a FILE object
FILE* streamW = fdopen (fds[1], "w");
fprintf (streamW, "Hello World of Pipes!\n");
fflush (streamW);
close (fds[1]);

This possibly in different process/thread:
// Reader: Convert read file descriptor to a FILE object.
FILE* streamR = fdopen (fds[0], "r");

// Read until end of the stream.
char buffer[1024];
while (!feof (streamR) && !ferror (streamR)

&& fgets (buffer, sizeof (buffer), streamR) != NULL) {
printf("%s", buffer);

}
close (fds[0]); demo_pipe.c

31

Summary

 A process is a program in execution
 OS maintains process info in PCB
 Process State diagram
 Creating and terminating processes (fork)

 Process scheduling
 Long-, short-, and medium-term schedulers

 Scheduling queues

 Interprocess communication
 Shared memory

 Message passing

 Threads
 Share memory between threads of a process

 Each thread executes independently

	Slide 1
	Objectives
	Process Concept
	Process in Memory
	Process State
	Process Control Block (PCB)
	CPU Switch From Process to Process (Context Switch)
	Context Switch
	Job Types
	Scheduling: The Big Picture (cont’d)
	Schedulers (cont’d)
	Scheduling Queues
	Process Lifetime
	Process Creation: Unix Example
	C Program Forking Separate Process
	A tree of processes on a typical Solaris
	Process Termination
	Slide 18
	Thread Definitions
	Single and Multithreaded Processes
	Why Multithreading?
	Cooperating Processes
	Slide 23
	Slide 24
	IPC: Shared Memory
	Slide 26
	IPC: Message Passing
	IPC: Message Passing (cont’d)
	Slide 29
	Slide 30
	Summary

