
23-09-26 1

Cross Compiling,
Make, & Editors

Slides #4ENSC 351

@ Dr. Brian Fraser
Presented by Morteza Badali

23-09-26 2

Topics

1) What software components run on the board?

2) How can we build our software?

3) How can we edit files via just text console?

23-09-26 3

Software Components

Time during Boot

U-Boot

Das U-Boot:
Bootloader to...

Root
File System

Root File System (RFS):
Contains all...

ls, ping, helloWorld

Kernel

Linux Kernel:
Core Linux kernel for process

control, memory, IO, scheduling.

initialize hardware,
and load kernel.

 user-level programs.

23-09-26 4

Boot Select

U-Boot

eMMC

Kernel

Root
File System

U-Boot

uSD Card

Kernel

Root
File System

How to recover if
eMMC image

corrupts?

RFS can reflash
eMMC (“Flasher”)

or just
run the system.

uSD has boot-priority
Power off board,

insert uSD,
turn power on.

23-09-26 5

Servers & Directories

TFTP Download

kernel in U-Boot

Mount via NFS

$HOME/cmpt433/work

$HOME/cmpt433/public /mnt/remote

TargetHost

● Work (private) Directory
–

Ex: .c, makefiles

● Public Directory
– Holds files to...
– Unprotected by passwords!

Only for compiled code.

Store all development files

share with board.

23-09-26 6

Cross-compile demo

● Compile on host for target
(host)$ arm-linux-gnueabihf-gcc hello.c -o hello

● Check compiled file
(host)$ readelf -h hello

● Run on board via NFS (one line each)
(bbg)$ sudo mount -t nfs
192.168.7.1:/home/morteza/cmpt433/public
/mnt/remote

(bbg)$ cd /mnt/remote/
(bbg)$./hello

23-09-26 7

Makefiles

23-09-26 8

Makefile Basics

● Makefiles are..

– Name your script Makefile
– Build a specific make-target with:..

– Build default make-target with:
(host)$ make

● Examples
(host)$ make clean
(host)$ make all

(host)$ make daTarget

scripts used for compiling projects.

23-09-26 9

...

...

...

...

...

...

Simple Makefile

Simple Makefile for building Hello world!

CC_C = arm-linux-gnueabihf-gcc
CFLAGS = -Wall -g -std=c99 -D _POSIX_C_SOURCE=200809L -Werror

app:
$(CC_C) $(CFLAGS) helloWorld.c -o hello
cp hello ~/cmpt433/public/myapps/

clean:
rm hello

Comments with #

Define custom variables
for later use.

Targets of form
targetName:

Command(s) for this target.

clean a common target
to remove all build files.

Commands must be indented with a TAB!
(and no blank lines)

23-09-26 10

..

..

..

..

..

More Makefile
OUTFILE = helloWorld
OUTDIR = $(HOME)/cmpt433/public/myApps

CROSS_COMPILE = arm-linux-gnueabihf-
CC_C = $(CROSS_COMPILE)gcc
CFLAGS = -Wall -g -std=c99 -D _POSIX_C_SOURCE=200809L -Werror

all: app nestedDir

app:
$(CC_C) $(CFLAGS) helloWorld.c -o $(OUTDIR)/$(OUTFILE)
ls -l $(OUTDIR)/$(OUTFILE)

nestedDir:
make --directory=myNestedFolder

clean:
rm $(OUTDIR)/$(OUTFILE)

Setup output info once,
used twice.

First target is default.

List dependencies after :

Multiple commands.

Build a nested project
folder, if any.

(Not often used)

23-09-26 11

..

Compiler Flags

OUTFILE = factorial
OUTDIR = $(HOME)/cmpt433/public/myApps

CROSS_COMPILE = arm-linux-gnueabihf-
CC_C = $(CROSS_COMPILE)gcc
CFLAGS = -Wall -g -std=c99 -D _POSIX_C_SOURCE=200809L -Werror

..... rest of makefile omitted...

All warnings

Debug
symbols

C99 support.

Explicit POSIX support (for
nanosleep() function).

Warnings as
errors.

23-09-26 12

Nano

● Nano is a somewhat easier to use text editor.
$ nano myfileToEdit.txt

– Just type and edit text as you might expect.

● Commands
– : Displays help. Ctrl+x to quit help.
– : Quit, asks you if you want to save.

Ctrl+g

Ctrl+x

23-09-26 13

Simple create/view a file
● Redirect text to a file

$ “Overwrite file with text” test.txt
$ “Adding this to end of file” test.txt

● View a file
$ daFile
concatenate the file, outputs to stdout (terminal)

$ daLongFile
shows page-by-page view of long file

$ -20 daLongFile
Shows last 20 lines of the file.

● Pipe output from one tool to another
$
displays kernel messages

– $ dmesg | less
$ dmesg | tail -20

cat

less

tail

dmesg

echo
echo

>
>>

23-09-26 14

Summary

● Boot sequence
– UBoot --> Kernel --> Root File System

● Makefiles automate building software.
– Create targets for different products/actions.
– Use suffix rules for large projects.

● Text-based Editors
– Nano

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

