
 1

How to control Adafruit NeoTrellis 4x4 Led Button Matrix
from C code.

 2

Table of contents

1. Initial Setup

1.1 How to wire up led matrix
1.2 How to set the required pins to I2C mode
1.3 Verify the connection

2. Designing basic API to control the matrix
2.1 High level overview
2.2 Writing API to access i2cdevice
2.3 Implementing control mechanism for the LEDs of the matrix
2.4 Implementing control mechanisms for the Buttons of the matrix

 3. Troubleshooting
 4. References

 3

1. Initial Setup

1.1 How to wire up led matrix

To be able to control the matrix we need to wire it up correctly first. Matrix has 4
main pins: ground(GND), power(Vin), Data Pin(SDA), Clock Pin(SCL). We need
to connect all those pins correctly for the matrix to function properly.

Look at the connector on the picture to see all the required pins:

For convenience you should buy universal 4 pin female to female cable:

It will simplify the wiring process.

 4

Now we need to identify the required pins on the board. To do so, let’s have a look
at the beaglebone scheme:

We will use the following pins:

1. GND(P9-1) or any other DGND pin
2. Vin(P9-7) or any other SYS_5V pin
3. SDA(P9-19)
4. SCL(P9-20)

After all the wires are connected properly it should look like this:

1.2 How to set the required pins to I2C mode

 5

 and verify the connection

After we have correctly wired up the matrix we need to set the SDA and SCL pins
to I2C mode.
To do this follow these steps:

1. SSH into the board.
2. config-pin p9_19 i2c

config-pin p9_20 i2c

1.3 Verify the connection

After the pins are configured we can see that the device is connected to the board
by using i2cdetect –y –r 2. Our device should be at the adress 0x2E. Example:

We can get the dump of the registers of the device by running i2cdump –y 2
0x2E:

If terminal says that there are no such commands, you’ll need to install i2c-tools
package. Just run: sudo apt-get install i2c-tools
If it doesn’t work, see 3. Troubleshooting

 6

After that we’re all set and ready to write some code.

2. Designing basic API to control the matrix

2.1 High Level Overview

To be able to control the matrix effectively we will need to implement several
components:

1) i2cdevice – it will contain methods to access connected through i2c
devices

2) smbus – wrapper for writing and reading from i2c bus
3) seesaw – abstraction level to control the chip of the matrix
4) trellis – abstraction level to control the LED matrix from user space

2.2 Writing API to access i2cdevice

To access a connected i2c device we need to implement two components:

1) smbus (for description see previous section)
2) i2cdevice (for description see previous section)

Basic functions of smbus is to write and read from i2cbus. To do that it needs to
know two things: which bus to use and which device on that bus to read
from/write to. So, the interface for the smbus can look like this:

 7

Now let’s have a look at each of those functions.

initializeSMBus will take path to the “file” used to communicate with the bus and
open this file. The path for the bus used in this example is /dev/i2c-2.
We will save the file descriptor to be able to later write to this file without opening
it again.

After we will be done with using smbus, we will need to close the file:

Before any communication is done with the I2C device, we will need to set it to
slave mode. For that we will issue a special sys call to the I2C bus driver:

I2C_SLAVE is defined in i2c-dev.h file and expands to 0x0703.
Now let’s have a look at writing and reading functions:

 8

writeTo and readFrom will both take I2C device address (0x2E in our case),
buffer to write to/read from and length of the buffer. It first sets device to slave
mode and then reads from/writes to that device.

Once we have finished smbus, we can implement i2cdevice so we can
communicate with i2c devices easily. The interface can look like this:

Same as in smbus we have write and read functions, initialization and destruction
functions. We will use smbus module inside i2cdevice to write to and read from
the actual device.

The code for it is very straightforward and implementation is provided together
with this tutorial. The only point I want to make is automatic pin configuration
when i2cdevice is initialized:

 9

It simplifies the pin configuration so there’s no need to do it manually every time.

2.3 Implementing control mechanism for the
LEDs of the matrix

After we have finished implementing i2cdevice interface, we can start designing
our API to control the matrix. We’ll start with implementing seesaw module that
will allow us to create an abstraction of communication with the matrix chip.

Interface can look like this:

Same as before we have initialization and destruction of the module, writing and
reading from the device.

 10

Seesaw module will be abstraction for writing and reading to the matrix registers.
It will use i2cdevice for communication with the matrix.
There are several commands for the matrix this module is implementing but the
most important one is resetChip and ssRead.

Reset chip function will clear all the registers of the chip, literally resetting it BUT
it will not write anything to the “activation” registers to light up or turn off the
LEDs. This function has to be called after initialization of the device was
completed to wipe out all the previous value from the registers (in case there are
some).

ssRead function will read from the device file, but do so we first need to write
what register we want to read from. We will pass the base register for the
component and offset indicating the register we want to read from. And only then
can we actually read. The rest of the code can be found together with this tutorial.

After we have finished our seesaw module to do basic write/read operations, we
can get to implementing the trellis module which will provide interface for
controlling LEDs of the matrix.

 11

To be able to control the LEDs of Adafruit Matrix, we need to know some basic
registers we want to write to and initial setup we must do to make it work.
Interface of trellis module can look like this:

Trellis will use seesaw for communication with the matrix.

When we initialize trellis module, we need to do some setup on the matrix before
we can control it:

1) Initialize seesaw device.
2) Set matrix buffer size.
3) Set push event (this is done to register buttons)
4) Turn on the pixels on (it will turn the pixels on with the wiped old

colors, so even if any of the pixels were turned on, they all will be
off due to resetChip in seesaw).

 12

Registers that we will need for all the required commands:

You can find the code attached to this tutorial.
After we’re done with the setup, we can play with the lights. To turn on specific
LED:

0x00 + index * 3 (3 is offset for g, r, b) is the start address of the LED buffer that
contains color.
And then we have to call pixelOn(), so matrix will display the new color of LED.

 13

2.4 Implementing control mechanisms for the
 Buttons of the matrix

To be able to identify which LED button the user has pushed, we need to enable
push events on the matrix:

So, we have three options on how to register user’s click on the LED button:

1) Button down
2) Button release
3) Button down and button release both

To only detect button down, we have to call setEventForPixel, pass LED index
and TRELLIS_EVENT_RISING_EDGE. Rising edge means that when we push
down, we connect the circuit and current starts flowing so we record the push. If
we want to register on button release we have to pass
TRELLIS_EVENT_FALLING_EDGE. And if we want both, we simply register
both events one after another.

 14

To be able to read the events from the board, you can use this function:

It will read the event count from the board, and if it’s greater then 0, then we will
read all the events that happened. After we do it, we will have to convert that data
to index of the button that was pushed using getSeeSawKey:

I can’t say why the formula is this or why we must do (events >> 2) & 0x3F to
make sense of the data received, but that’s the way to do it. You can get more
information about the chip and its registers here: https://learn.adafruit.com/adafruit-
seesaw-atsamd09-breakout?view=all.

 15

3. Troubleshooting

If after completion of all the steps in 1.1 and 1.2 you don't see the same result as
demonstrated in 1.3 you may try to do this:

1) Check all the wiring in 1.1 and commands in 1.2. Make sure that
power and ground pins are functioning correctly.

2) If 1) doesn’t help, then see if there’s any current running in the
matrix circuit. Use Ammeter (ampere meter).

3) If circuit is functioning correctly (current is running) and all the pins
are set correctly, then there may be something wrong with the
SDA and SCL pins. BeagleBone has another SDA and SCL pair
just above the ones we used. SDA pin: P9_18 and SCL pin:
P9_17. These pins are used to communicate over i2c1 bus.
Follow the same steps from 1.2 but use 17 and 18 pins and i2c1
bus.

 16

4. References

1. Trellis picture in 1.1 - https://cdn-shop.adafruit.com/970x728/3954-05.jpg.
2. Grove cable picture in 1.1 -

https://cdn.shopify.com/s/files/1/2311/3697/products/grove-universal-4-pin-to-
beaglebone-blue-6-female-jstsh-conversion-cable-10-pack-seeed-cool-
components_477_799x599.jpg?v=1537318408

3. Information about the Seesaw chip (ATSAMD09) -
https://learn.adafruit.com/adafruit-seesaw-atsamd09-breakout?view=all

4. ATSAMD09 data sheet –
http://ww1.microchip.com/downloads/en/devicedoc/atmel-42414-sam-
d09_datasheet.pdf

