
Adafruit’s 16x32 LED Matrix Guide for BeagleBone
Written by: Janet Mardjuki (LED Matrix)

1. Introduction
This guide will provide guidance to use the 16x32 LED Matrix that is sold by Adafruit. LED
Matrix can produce different RGB colour on ‘screen’ itself, but it is not ‘true RGB’ as the R,
G, and B input only has one bit (only 0 or 1) associated with each signal, therefore, the
selection is pretty limited. The LED Matrix has no built-in PWM; therefore, the frame has to
be quickly ‘refreshed’ for every period of time.

You might want to read more about how the LED Matrix works by reading the following link:
https://learn.adafruit.com/32x16-32x32-rgb-led-matrix/how-the-matrix-works

2. Setup
2.1 Wiring-up the wires
You can take a look at the following link if you want to understand in detail what each input
represents:
https://learn.adafruit.com/32x16-32x32-rgb-led-matrix/connecting-with-jumper-wires
From previous link, you learned that the ribbon wire ends are flipped, which we can get the
following positions for the other end of the wire to connect with the BeagleBone:

G1 R1 (Red wire)
GND B1
G2 R1

GND B2
B A
D C

LAT CLK
GND OE

Figure	
 1:	
 Ribbon	
 wire	
 signal	
 position	
 to	
 be	
 connected	
 with	
 GPIO	

The following table shows us what each signal represent and how are they used for the LED
Matrix:
Label Signal Description

R1 Red1 Red colour signal for the top half of the matrix (x-index: 0-7)
B1 Blue1 Blue colour signal for the top half of the matrix (x-index: 0-7)
G1 Green1 Green colour signal for the top half of the matrix (x-index: 0-7)
R2 Red2 Red colour signal for the bottom half of the matrix (x-index: 8-15)
B2 Blue2 Blue colour signal for the bottom half of the matrix (x-index: 8-

15)
G2 Green2 Green colour signal for the bottom half of the matrix (x-index: 8-

15)
A Row A MSB of the row bits for the row selection
B Row B Middle bit of the row bits for the row selection
C Row C LSB of the row bits (for the 16x32 Matrix) for the row selection
D Row D LSB of the row bits (for anything bigger than 16x32 Matrix) for

the row selection

CLK Clock Ends of each bit of the data (each pixel)
LAT Latch Ends of row of data
OE Output

Enable
LED on/off (enable/disable), for row transition

GND Ground Signal to ground
Figure	
 2:	
 Ribbon	
 wire	
 signal	
 position	
 at	
 the	
 end	

It is highly recommended to use different colour of wires for different signal. General rule of
thumb, always use black wire for ground. The author of this guide, also prefers to connect
all the jumper wires to the ribbon wire first and GPIO later than connecting the jumper wires
to ribbon wire and GPIO one-by-one at once.

 Figure	
 3:	
 Ribbon	
 wire	
 attached	
 with	
 jumper	
 wires	

In general, any 12 GPIOs that are available on the BeagleBone are good for this LED
Matrix. Please take a look at http://beagleboard.org/support/bone101 or http://target_ip/ (for
example, http://192.168.2.2/ which will redirect to http://192.168.2.2//support/bone101) to
figure out the mapped Linux GPIO number. The author prefers to keep all the GPIOs near
by each other and at the corners; the following are the GPIOs the author used: (the pin
numbers are in the brackets ‘[]’)

R1 [8] G1 [80]
B1 [78] G2 [79]
R2 [76] B [77]
B2 [74] LAT [75]
A [72] CLK [73]
C [70] OE [71]

Figure	
 4:	
 GPIO	
 mapping	
 to	
 the	
 LED	
 output	

Note: If you need to use the HDMI, you would not be able to use above mapping, as there
will be conflicts with the pin usage.

In addition to those signal pins mentioned above, you would also need to connect the three
GND signal wires and a D signal wire to the GND pins on BeagleBone, which should be
enough as it has six GND in total.

If you decided to use any kind of cape you will have to make sure that the GPIOs you will be
using are not used by the cape, which can be done by reading the cape schematics, and
check both P8 and P9 pins usage.
If the cape you wanted to use does not have a female/ tall male pin header attached on top,
you can try tall pin header to connect the cape and BeagleBone (shown on figure 5), and

use the extra gap you just created to attach the wires; last resort is to solder the pins you
need (not recommended unless you know how to do it or you can ask someone who are
experienced).

Figure	
 5:	
 All	
 the	
 jumper	
 wires	
 are	
 connected	
 to	
 respective	
 the	
 GPIO	
 pins	

After attaching the jumper wires, you can plug the other end (the unused one) of the ribbon
wire to the LED Matrix Input (labeled with IN).

2.2 Powering on
You would need to supply the matrix with +5V power; you can just attach the Molex header
to the power pin, and connect and plug in the power supply.

Figure	
 6:	
 Connecting	
 the	
 Molex	
 header	

If you have different power model, please refer to the following link:
https://learn.adafruit.com/32x16-32x32-rgb-led-matrix/powering
After powering the LED Matrix, you might see the matrix lights up and displays different
pattern.

3. Testing the LED Matrix
3.1 Disabling the HDMI
If you decided to use this guide’s GPIO pins mapping, you would have to disable to the
HDMI output overlay as those are the default setting, and it conflicts with the GPIO. You can
skip this part if you decided to use other pins.

1. First, you will have to edit the uEnv.txt: (You can use any editor that you like)
vim /boot/uboot/uEnv.txt

2. Find the line ##Disable HDMI on the uEnv.txt, under that line it you will find the
following line:

#optargs=capemgr.disable_partno=BB-BONELT_HDMI,BB-BONELT_HDMIN

3. Uncomment that line by removing the # sign in front of the line.
4. Save the file and exit the text editor.
5. Reboot the target

reboot

6. After you gain your access back, check the slots loaded on BeagleBone
cat /sys/devices/bone_capemgr.*/slots
0: 54:PF---
1: 55:PF---
2: 56:PF---
3: 57:PF---
4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
5: ff:P-O-- Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
6: ff:P-O-- Bone-Black-HDMIN,00A0,Texas Instrument,BB-BONELT-HDMIN

You should get the result above; both HDMI and HDMIN are unloaded in the
BeagleBone which you can tell by checking the char L which are not in ff:P-O-- for
HDMI and HDMIN.

3.2 Writing the testing program
About 80% of this guide’s test codes are converted from Python to C, and source is:
https://learn.adafruit.com/connecting-a-16x32-rgb-led-matrix-panel-to-a-raspberry-
pi/experimental-python-code
The test program in this guide need the general module created by Dr. Brian Fraser, or you
can create your own sleep_usec() function which basically let the program sleep for a
number of ms.
The testing code test_ledMatrix.c will Makefile will be provided in another link;
you can read the comments to understand what the code does.
The following code snippet is the refresh method for that will be discussed later:

/**
 * ledMatrix_refresh
 * Fill the LED Matrix with the respective pixel colour
 */
static void ledMatrix_refresh(void)
{
 for (int rowNum = 0; rowNum < 8; rowNum++) {

lseek(fileDesc_oe, 0, SEEK_SET);
write(fileDesc_oe, "1", 1);
ledMatrix_setRow(rowNum);

 for (int colNum = 0; colNum < 32; colNum++) {
ledMatrix_setColourTop(screen[colNum][rowNum]);
ledMatrix_setColourBottom(screen[colNum][rowNum+8]);
ledMatrix_clock();

 }
 ledMatrix_latch();
 lseek(fileDesc_oe, 0, SEEK_SET);
 write(fileDesc_oe, "0", 1);
 sleep_usec(DELAY_IN_US); // Sleep for delay
 }
 return;
}

The function refresh above is a function to fill one frame of the LED Matrix at a time. Data to
the matrix send at every rising edge, the program basically queuing up the value for the
LED Matrix for the current row. For example, the program will be sending the bit for y-axis
pos 0, then next clock, y-axis pos 1, then next clock, y-pos 2, and then keep going until y-
axis pos 31. When you are done with the current row, you will have to turn off the output, as
the hardware cannot light up more that one row, then latch telling the hardware that you are
done with the current row. The LED can light up two lines at a time; one must be on the top
eight and one on the bottom eight.

Note: The open() method getting each GPIO value in the test_ledMatrix.c are
hardcoded with GPIO value; if you chose different GPIO you would have to change the
value on #define and on the open() method.

After you compiled the program using make command and run the program on target, you
should get the following displayed on the LED Matrix screen:

Figure	
 7:	
 Final	
 result	
 in	
 running	
 the	
 program	

4. Troubleshooting

1. If the LED Matrix flickers a lot, try decreasing the delay, or you can try kernel code or
use the PRU (would not be covered by this guide)

2. If the LED Matrix displays random pattern with random colour, probably you did not
attach your GPIOs/wire properly

3. If only left half of the LED light up, you probably did not plug in the power properly
4. If only the top half/top bottom light up, check again your code whether you copied

properly. If this does not work, you can try checking the wires for the RGB 1 or 2
depending on which portion does not get displayed properly.

5. If only some parts of the pattern get displayed, check back the ‘row’ signal wires,
make sure they are attached to the appropriate GPIO

6. If none of the LED ‘pixel’ light up you can try the following method to fix it
1. Try checking all the jumper wires connection, make sure all jumper wires are

connected in the appropriate place
2. Check back all the wires connected, make sure they connected to the right GPIO

and GND
3. If you are using the GPIO this guide use, check again for the HDMI overlay, make

sure they are all disabled

4. If you have a DMM, you can check if your GPIO actually drive about 3.3V voltage
when GPIO value is ‘1’. Clip the black wire to GND, and the Red to the GPIO you
want to test (shown in the image below)

	

Figure	
 8:	
 Checking	
 the	
 GPIO	
 using	
 DMM	

