Using ADC on SPI (Serial Peripheral Interface) Guide for BeagleY-
Al

by Matthew Stewart
Sept. 28, 2025

Guide has been tested on
BeagleY-AI (Target): Debian 13
PC OS (host): Debian 13

This document guides the user through
1. Setting up the hardware SPI

Table of Contents

1. ENADIE SPL .ttt e n e n e a e rene s 2
2. SPT USE WIth ADC ...ttt ettt bttt sb e s bbb saeese st e saesbe e st emeesaenee 3
Formatting

1. Commands for the host Linux’s console are show as:
(host)$ echo "Hello PC world!"™

2. Commands for the target (BeagleY-AI) Linux’s console are shown as:
(byai)$ echo "Hello embedded world!"

Revision History

* Sept 28, 2025: Using ADC on SPI with Beagle-Y Al. Inspired by SPI guide by Dr. Brian Fraser
e Oct7,2025: Added “enable SPI section”

Generated Oct 7, 2025 1/5

1. Enable SPI

Before using the serial peripheral interface (SPI) it needs to be enabled.
1. Start by checking to see if SPI is active on your board.
ls /dev | grep spi
If it is set up you should see spidev0.0 and spidev0.1. Spidev0.0 is the important one for

continuing with this guide. If that is there, please continue to Section 2. If this is your first time
using SPI, it will probably not be enabled. Continue here to enable the SPI

2. Find the device tree overlay file
grep spi

ls /boot/firmware/overlays

You should find a file that looks something like : k3-am67a-beagley-ai-spidev0.dtbo . This
file might be named differently in other versions.

3. Edit extlinux.conf

sudo nano /boot/firmware/extlinux/extlinux.conf
In the label microSD (default) section.
Add or uncomment a line:

fdtoverlays /overlays/k3-am67a-beagley-ai-spidev0.dtbo (replace file name with
above name if different.

Save and exit.

4. Save and reboot

sudo reboot

5. Verify

ls /dev | grep spi
spidev0.0 and spidev0.1 should now both be there. Continue to Section 2.

Generated Oct 7, 2025 2/5

2. SPI use with ADC

The ADC connected via the Serial Peripheral Interface (SPI). It is a four wire protocol:

Serial Clock (scrk): This is the clock that controls when data is transmitted.
Master Out, Slave In (Mos1): Transmits data from the CPU to the ADC
Master In, Slave out (M150): Transmits data from the device back to the CPU.

Chip Enable (ce): Also called chip select, or device enable. This allows multiple devices to
share the same SPI bus.

Connect the wires from the BYAI header to the breadboard. Pay attention to the data flow
direction and check the wiring before powering up. BYAI documentation will show you the
header pinout and the ADC datasheet will show you the ADC pintout.

Check to make sure the SPI can be seen on the BYALI

* (byai)s$ 1ls -1 /dev/spidev*
* This will show you the SPI busses.
Loopback test (optional but recommended)
* On the BYAI disconnect the MOSI and MISO from the ADC connect the MISO to the
MOSI. This will have any data going out coming right back.
. (byai)$ sudo spidev_test -D /dev/spidev0.0 -s 250000 -v -S 5 -p "Talkin on
the SPI."
* You should get an output that looks something like this:
spi mode: 0x0
bits per word: 8
max speed: 250000 Hz (250 kHz)

TX | 54 61 6C 6B 69 6E 20 6F 6E 20 74 68 65 20 53 50 49 28
| Talkin on the SPI.|

RX | 54 61 6C 6B 69 6E 20 6F 6E 20 74 68 65 20 53 50 49 28
| Talkin on the SPI. |

Now we’re going to start building up a .c file to access the SPI. Starting with includes:

®* 4#include <stdio.h>
#include <stdint.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/spi/spidev.h>

The we create a read_ch function to read one channel from the ADC
. static int read ch(int fd, int ch, uint32 t speed hz) {

Generated Oct 7, 2025 3/5

* £d is the file descriptor for the SPI device
* ch is the channel number on the ADC

* speed hz SPI clock speed

* tx this is our request message to the ADC
* rx this is our receive buffer

6. We then have a structure that has all of the data that we want to send in one SPI transfer. Look
at the ADC datasheet and see if ou can understand this line

N uint8 t tx[3] = { (uint8 t) (0x06 | ((ch & 0x04) >> 2)),
(uint8 t) ((ch & 0x03) << 6),
0x00 };

7. A buffer for the received data
i uint8 t rx[3] = { 0 };

8. Now we put all of this together in a structure to get ready to send

* struct spi ioc_transfer tr = {
.tx buf = (unsigned long) tx,
.rx buf = (unsigned long)rx,
.len = 3,

.speed hz = speed hz,
.bits per word = 8,
.cs_change = 0
}i
9. This is the line where we actually ask the kernel to send the SPI message and get the reply

. if (ioctl(fd, SPI_IOC MESSAGE(1), &tr) < 1) return -1;
10. And now we actually send back the 12 bit data from this function.
i return ((rx[1] & O0x0F) << 8) | rx[2]; // 12-bit result
}
11. The following is a main function to set things up and read from each of the channels.

12. Point to the SPI 0 device and set some global variables

® int main(void) {
const char* dev = "/dev/spidev0.0";
uint8 t mode = // SPI mode O
uint8 t bits
uint32 t speed

0;
8;
= 250000;
13. Open the device (treated like a file)

N int fd = open(dev, O RDWR);

14. Send settings to the kernel
N if (fd < 0) { perror ("open"); return 1; }

if (ioctl(fd, SPI IOC WR MODE, é&mode) == -1) { perror("mode"); return
17}

Generated Oct 7, 2025 4/5

if (ioctl(fd, SPI_IOC WR BITS PER WORD, &bits) == -1) { perror ("bpw");
return 1; }

if (ioctl(fd, SPI_IOC WR MAX SPEED HZ, é&speed) == -1)
{ perror("speed"); return 1; }

15. Get ADC data from channels 0 and 1

16. int ch0 = read ch(fd, 0, speed);
int chl read ch(fd, 1, speed);

17. Print them to standard out.

. printf ("CHO=%d CH1=%d\n", chO, chl);
18. Close the file.
* close (fd) ;

return 0;

}

19. Put that together into a .c file and you should be able to compile this program to get data from
the ADC. (remember to cross compile)

20. To run this program you will need to use the sudo command. This program is accessing the
kernel directly and the OS doesn’t want just anyone doing that.

Generated Oct 7, 2025 5/5

