
Assignment 3: Beat-Box - V2 ENSC 351 with Dr. Brian

Assignment 3: Beat-Box
May be done individually or in pairs.
Do not give your work to another student, do not copy code found online without citing it,
and do not post questions about the assignment online.

Post questions to the course discussion forum.
You may use any code you or your partner have written for this offering of ENSC 351.

Submit deliverables to CourSys: https://coursys.sfu.ca
See the marking guide for details on how each part will be marked.

1. Drum-Beat Info
Your task is to create an application that plays a drum-beat. For this, you'll need a basic
understanding of what goes into a drum-beat and music.

Music is played at a certain speed, called the tempo. This tempo is usually in beats per minute
(BPM), and often ranges between ~60 (slow) and ~200 (fast) BPM. The beat is the time of a
single standard note (called a quarter note).

The “notes” in a drum-beat correspond to the drummer striking different drums (or in our case,
playing back recordings of those drums). Often, the music calls for hitting a drum faster than just
on the full beats, and hence notes are often played on half-beat increments (called eight notes).

For our standard rock drum beat, we'll be using three drum sounds: the base drum (lowest sound),
the snare (the sharp, middle sound), and the hi-hat (high metallic “ting”).

Music is often laid out in measures of 4 beats (hence the “quarter note”). A standard rock beat,
laid out in terms of beats, is:

Beat
(count from 1)

Action(s)
at this time

1 Hi-hat, Base

1.5 Hi-hat

2 Hi-hat, Snare

2.5 Hi-hat

3 Hi-hat, Base

3.5 Hi-hat

4 Hi-hat, Snare

4.5 Hi-hat
If you were coding this, you might have a loop that continuously repeats. Each pass through the
loop corresponds to a ½ beat (which is an eighth note, and one row in the above table). The loop
first plays any needed sound(s) and then waits for the duration of half a beat time.

The amount of time to wait for half a beat is:
Time For Half Beat [sec] = 60 [sec/min] / BPM / 2 [half-beats per beat]

If you want the delay in milliseconds, multiply by 1,000.

Generated Nov 12, 2022, 03:18 PM Page 1/8 © Brian Fraser

Figure 1: Musical score showing a rock beat.

https://coursys.sfu.ca/

Assignment 3: Beat-Box - V2 ENSC 351 with Dr. Brian

2. Folder Structure
Submit a single ZIP file containing your beat-box C/C++ code, and wave files. When the TA
extracts this ZIP file it must have a single Makefile which builds and deploys the application, and
wave files in one command: make

Specifically, your makefile must:
Build your C/C++ application to a file name beatbox deployed to:
~/cmpt433/public/myApps/
Copy your audio files to:
~/cmpt433/public/myApps/beatbox-wav-files/

You can make no assumptions about either the current user’s name, or where we will unzip your
code, so don't use relative paths to get to the above locations; use $(HOME) instead.

When we run your application on the target, you may assume that:
All GPIO pins are exported, configured for GPIO, and set to output.
We have a folder $(HOME)/cmpt433/public/asound_lib_BBB/ containing the
libasound.so library from the BeagleBone.:

You may find the following Makefile to be useful:

Makefile for building embedded application.
by Brian Fraser

Edit this file to compile extra C files into their own programs.
TARGET= beatbox
SOURCES= main.c audioMixer.c

PUBDIR = $(HOME)/cmpt433/public/myApps
OUTDIR = $(PUBDIR)
CROSS_TOOL = arm-linux-gnueabihf-
CC_CPP = $(CROSS_TOOL)g++
CC_C = $(CROSS_TOOL)gcc

CFLAGS = -g -std=c99 -D _POSIX_C_SOURCE=200809L -Werror -Wshadow -Wall

Asound Library
- See the AudioGuide for steps to copy library from target to host.
LFLAGS = -L$(HOME)/cmpt433/public/asound_lib_BBB

-pg for supporting gprof profiling.
#CFLAGS += -pg

all: beatbox wav

beatbox:
$(CC_C) $(CFLAGS) $(SOURCES) -o $(OUTDIR)/$(TARGET) $(LFLAGS) -lpthread -lasound

clean:
rm -f $(OUTDIR)/$(TARGET)

Copy the sound files to public directory.
wav:

mkdir -p $(PUBDIR)/beatbox-wav-files/
cp -R beatbox-wav-files/* $(PUBDIR)/beatbox-wav-files/

Generated Nov 12, 2022, 03:18 PM Page 2/8 © Brian Fraser

Assignment 3: Beat-Box - V2 ENSC 351 with Dr. Brian

3. Wiring
The following is the required hardware configuration for completing this assignment.

Joystick (see A2D Guide)
P9.32 (VDD_ADC) to +V to the joystick
P9.34 (GNDA_ADC) to -V to the joystick
P9.37 (AIN2) to X output on the joystick
P9.38 (AIN3) to Y output on the joysticks
Place joystick with breakout board’s text (“Analog Mini Thumbsick”) to the left, and its
“+ Y X -” pins at the top and bottom.

8x8 LED Matrix (see I2C Guide)
P9.01 (Ground) to “-” pin on the LED Matrix
P9.03 (3.3V) to “+” pin on the LED Matrix
P9.17 (I2C1-SCL) to “C” pin on the LED Matrix
P9.18 (I2C1-SDA) to “D” pin on the LED Matrix
Orient display with pins at the bottom, and display pointing out the top of the
breadboard. (This is 180 degree rotation: text on the “backpack” board upside down).

GPIO Buttons
All buttons:

Insert button across the trench on the breadboard.
P9.03 (3.3V) Connect left pin to 3.3V
P9.01 (Ground) Connect right pin through a 1K ohm resistor to ground

Connect the GPIO pin to read the button onto the right pin of button
(Circuit: 3.3V ---- Button ---- [GPIO probe point] ---- Resistor ---- GND

P8.15 (GPIO) Mode (gray?) button’s GPIO
P8.16 (GPIO) Base drum (red?) button’s GPIO
P8.17 (GPIO) Snare drum (yellow?) button’s GPIO
P8.18 (GPIO) Hihat (green?) button’s GPIO

Use the provided hardware verification app to ensure that your hardware wiring matches the
required setup. This wiring setup will be used by the TAs for marking, so your wiring should
match it 100% (except possibly the colour of the buttons).

Generated Nov 12, 2022, 03:18 PM Page 3/8 © Brian Fraser

Assignment 3: Beat-Box - V2 ENSC 351 with Dr. Brian

4. Beat-Box
You will create a beat-box application which can play different drum-beats on the BeagleBone
using the USB-Audio Adapter included in your hardware kit.

4.1 Audio Generation
The application must:

Generate audio in real-time from a C or C++ program using the ALSA API1, and play that
audio through the USB Audio Adapter’s headphone output
You must have at least two threads:

1. A low-level audio mixing thread which provides raw PCM data to the ALSA
functions. This thread is in the provided audio code (which you must complete, and
may adapt to your needs).

2. Higher-level beat-generation thread which generates a rock beat and tells on your
lower-level audio playback module (thread) to play rock beat sounds as needed.

Generate at least the following three different drum beats (“modes”). You may optionally
generate more.
1. No drum beat (i.e., beat turned off)
2. Standard rock drum beat, as described in section 1. .
3. Some other drum beat of your choosing (must be at least noticeably different). This beat
need not be a well-known beat (you can make it up). It may (if you want) use timing other
than eighth notes.

You may add additional drum beats if you like! Have fun with it!
Must use at least three different drum/percussion sounds (need not use the ones
provided. The provided rock beat using the base drum, hi-hat, and snare.

Control the beat's tempo (in beats-per-minute) in range [40, 300] BPM (inclusive); default
120 BPM. See next sections for how to control each of these.
Control the output volume in range [0, 100] (inclusive), default 80.
Play additional drum sounds when needed (i.e., have functions that other modules can call
to playback drum sounds when needed). See Custom Push-Buttons; Section 4.3
Audio playback must be smooth, consistent, and with low latency (low delay between
asking to play a sound and the sound playing).
At times, multiple sounds will need to be played simultaneously. The program must add
together PCM wave values to generate the sound.

It is likely that the assignment will be updated to require some attention to some real time issues,
such as thread priorities. This is likely to relate to the audio mixing thread in the provided code,
and to the beat-generation thread describe here. It will likely add more code to the
pthread_create() function call.

1 Must get special permission to generate sound using other approaches or frameworks.

Generated Nov 12, 2022, 03:18 PM Page 4/8 © Brian Fraser

Assignment 3: Beat-Box - V2 ENSC 351 with Dr. Brian

Hints
Follow the audio guide on the course website for getting a C program to generate sound.
Look at the audioMixer_template.h/.c for suggested code on how to go about
creating the real-time PCM audio playback of sounds.

You don't need to use this code, and you may change any of it you like.
For the drum-beat audio clips, you may want to use:

base drum: 100051__menegass__gui-drum-bd-hard.wav
hi-hat: 100053__menegass__gui-drum-cc.wav
snare: 100059__menegass__gui-drum-snare-soft.wav

When you are first completing the low-level PCM audio mixing code, first try setting your
main() to something like the following pseudo-code:

initialize audio mixer
while(true) {
 play the base drum sound
 sleep(1);
}

Remove this code once you have written the beat-generation module/thread.

After you can play one sound reliably, try using the same loop as above, but this time play
2 sounds at once (i.e, play base and hihat before sleep(1)).
Beyond the low level audio mixer module, you’ll likely want a higher level module which
generates the drum beats, and allows other modules to request a sound is played.

You’ll need a thread in here for continuously generating the beat.
Have your thread’s sleep duration depend on the current tempo (beats per minute)

4.2 Quit
When the user types Q <enter> on the keyboard, exit the application.

The following C code may be useful to place in the middle of your main() (you may copy it
without citing). Note that getchar() will wait until the user enters a character (and presses
ENTER). It is blocking.

printf("Enter 'Q' to quit.\n");
while (true) {

// Quit?
if (toupper(getchar()) == 'Q') {

break;
}

}

Generated Nov 12, 2022, 03:18 PM Page 5/8 © Brian Fraser

Assignment 3: Beat-Box - V2 ENSC 351 with Dr. Brian

4.3 Custom Push-Buttons
Wire up 4 custom push buttons with the following functionality. Colours are just suggestions;
only the wiring matters. See the above Section 3. for Wiring.

When a button is pressed, begin the action stated below. There is no action for holding a button
(i.e., make the button edge triggered on the pressing-edge of button; nothing for held, nothing for
released).

Buttons
Mode (gray)

On each button press it should then cycle to the beat (modes).
Default is the standard rock beat.
Order of cycle is: standard rock beat, custom beat(s), none (then repeat).

Base Drum (red)
Play the base drum sound once, right now (or other sound, if using custom sounds).

Snare Drum (yellow)
Play the snare drum sound once, right now (or other sound, if using custom sounds).

Hi-hat (green)
Play the hi-hat sound once, right now (or other sound, if using custom sounds).

4.4 Joystick
The user should be able to reliably press and release the joystick and have it change the volume
or tempo just once. And the user should be able to press and hold the joystick and have it keep
changing slow enough to control it. No precise timing is required, just easy to control.

Pressing up increases the volume by 5 points; down decreases by 5 points.
Don't allow it to exceed the limits (above).

Pressing right increases the tempo by 5 BPM, left decreases by 5 BPM.
Same requirements as the volume.

4.5 8x8 LED Matrix
Use the 8x8 LED matrix to give the user feedback about what they are doing.

• Drum Beat Mode
◦ Show what drumbeat mode we are in. This is what is displayed by default.
◦ Display “M0” (none), “M1” (rock), or “M2” (custom); additional “M3”... if more.

• Volume
◦ When the user is pressing, or has recently pressed up or down on the joystick, display

the 2 digit number for the volume.
• Tempo

◦ When the user is pressing, or has recently pressed left or right on the joystick, display
the 2 digit number for the tempo (beats per second).

• General
◦ Display 99 if the value is >100
◦ Continue displaying the volume or tempo message for between about 0.5 to 1.5s after

the user release the joystick. Then return to displaying the mode.

Generated Nov 12, 2022, 03:18 PM Page 6/8 © Brian Fraser

Assignment 3: Beat-Box - V2 ENSC 351 with Dr. Brian

4.6 Text Display
Updated Nov 12
Once per second, print to the console the following:

Beat mode (its number)
Tempo
Volume
Time between refilling audio playback buffer

Each time your code finishes filling the playback buffer, mark the interval.
Format: Low[{min}, {max}] avg {avg}/{num-samples}

Time between generating 8th notes of your drumbeat
Each time your code finishes generating an 8th note during your drumbeat, mark an
interval. Interval duration depends on tempo of playback.
Format: Beat[{min}, {max}] avg {avg}/{num-samples}

Sample output:
M1 120bpm vol:80 Low[20.83, 22.11] avg 21.32/47 Beat[250.13, 250.53] avg 250.25/4

Use the provided intervaltimer.h/.c code on the course website to mark each interval
(record the timestamp), and to get the statistics based on these timestamps.

4.7 Memory Testing
We will run Valgrind on your code to look for incorrect memory accesses and leaks. While
Valgrind-ing, your application's audio may stutter terribly and print buffer underflow errors
(running out of data); this is OK.

You may ignore all “leaks” or memory access that seem to be coming from libasound.so and
are not related to your code. For example, you may ignore:

==1804== Syscall param semctl(IPC_GETALL, arg.array) points to unaddressable byte(s)
==1804== at 0x49477E6: __libc_do_syscall (libc-do-syscall.S:47)
==1804== by 0x49CEE6F: semctl_syscall (semctl.c:48)
==1804== by 0x49CEE6F: semctl@@GLIBC_2.4 (semctl.c:94)
==1804== by 0x48E9B1D: ??? (in /usr/lib/arm-linux-gnueabihf/libasound.so.2.0.0)
==1804== Address 0xbd816000 is not stack'd, malloc'd or (recently) free'd

4.8 Hints
You may reuse code from your Assignment 1 (from ENSC 351, this semester) which either
you or your partner wrote.
Make C modules for each input and output device. Give them easy to use .h files and test
each module before integrating it with the rest of your application.
You may assume that all GPIO pins are already exported, and that they are configured to be
GPIO pins as input.
On a separate thread (a module!), continually read the state of the joystick and buttons.

A reasonable start is to poll these inputs around every 10 ms (~100 Hz). This should be
fast enough to capture user inputs (such button presses or joystick inputs).

Don’t Repeat Yourself

Generated Nov 12, 2022, 03:18 PM Page 7/8 © Brian Fraser

Assignment 3: Beat-Box - V2 ENSC 351 with Dr. Brian

Think through how you can avoid copy-and-pasting code numerous times.
For example, try writing one piece of code which can be called multiple times for
controlling the joystick’s repeating behaviour (able to press once and change once; able
to press and hold to have it keep incrementing slow enough to control it).

5. Deliverables
Submit the items listed below in a single ZIP file to CourSys: https://coursys.sfu.ca/

as3-beatbox.tar.gz
Compressed copy of source code and build script (Makefile).

Archive must expand into the following (without additional nested folders to find the
Makefile)

 <assignment directory name>
 |-- Makefile
 |-- C/C++ code for the application (may be inside own directory)
 \-- Wave files for playback (likely inside own directory)

Makefile must support both the `make` and `make all` commands to build your program
to $(HOME)/cmpt433/public/myApps/ plus it must copy your wave files to the public
folder as specified in Section 2.
(Do not use relative paths for getting to the cmpt433/public/myApps/ directory because
the TA may build from a different directory than you.)

Hint: Compress the as3/ directory with the command
$ tar cvzf as3-beatbox.tar.gz as3

You may use a different build system than make (such as CMake). If you do, include a file
named README which describes the commands the TA must execute to install the necessary
build system under Debian 11, and the commands needed to build and deploy your project
to the ~/cmpt433/public/myApps/ directory. The process must be straightforward and
not much more time consuming than running `make`.

Since the assignment can be done individually or in pairs, if you are working individually you'll
still need to create a group in CourSys to submit the assignment.

Remember that all submissions will automatically be compared for unexplainable similarities
from both this semester, and previous semesters!

Generated Nov 12, 2022, 03:18 PM Page 8/8 © Brian Fraser

https://coursys.sfu.ca/

	1. Drum-Beat Info
	2. Folder Structure
	3. Wiring
	4. Beat-Box
	4.1 Audio Generation
	4.2 Quit
	4.3 Custom Push-Buttons
	4.4 Joystick
	4.5 8x8 LED Matrix
	4.6 Text Display
	4.7 Memory Testing
	4.8 Hints

	5. Deliverables

