Assignment 2: Light Dip Detector - V1 ENSC 351 with Matthew Stewart

Assignment 2: Light Dip Detector

Submit deliverables to CourSys: https://coursys.sfu.ca/

+ This assignment may be done individually or in pairs; marked identically. Do not give
your work to students in other groups, do not copy code found online.

4 Post general questions to the course discussion forum on Piazza.
4 Ask questions specific to your solution as private messages on Piazza

See the marking guide for details on how each part will be marked.

Do not give your work to another student, do not copy code found online, and do not post
questions about the assignment online other than the course forum. See website for
guidance on using Al tools.

+ If you have previously taken the course, you may not re-use your previous solution.

1. Write "1ight sampler™ Program

Write a C, C++, or Rust program named 1ight sampler which runs on the target to read the
current intensity of light in the room. It will:

Use the light sensor to read current light level.

<+ Compute and print out the number of dips in the light intensity seen in the previous second.

Use the rotary encoder to control how fast the LED blinks (using PWM). This LED emitter

is designed to flash directly at the “detector” light sensor.

+ Each second, print some information to the terminal.

¥ Listen to a UDP socket and respond to commands

¥ Use the terminal to display some simple status information.

Your program must:
Build using CMake (or similar if using Rust).
¥ Use good modular design with at least four (4) modules (i.e., modules with a .h and . c file
and a coherent interface to its functionality)'. You may have significantly more! For C, all
functions should be internal linkage or external linkage as best fits their purpose;
public/private in C++ or Rust.
Have a HAL layer or directory which separates lower-level hardware access modules.

Think of this assignment as a number of mini-tasks put together:
Analog to digital (ADC) reading (detector light sensor)
Reading the rotary encoder
PWM to control an LED emitter
UDP networking
Use a provided module to analyze the sampling speed of your program.
Threads and thread synchronization
Display some basic information.

See last page of assignment for suggestions on getting started, and checking your progress.

1 Assignment directions are written for C. If using Rust/C++ you must adapt requirements the best way you can.

Generated Oct 21, 2025, 09:56 PM Page 1/10 © Brian Fraser(modified M. Stewart)

Assignment 2: Light Dip Detector - V1 ENSC 351 with Matthew Stewart

1.1 Sampling Light Levels
In a separate thread (using pthreads), continually sample the light level:
¥ Align the light sensor so that it is directly facing the LED, which we’ll drive via PWM.
¥+ The light sensor converts the light intensity to a voltage, which you will connect to the
ADC.
All samples taken during one second are saved into a history.
¥ The program must store, analyze, and provide access to the previous second’s samples and
statistics’.
¥ Sleep for 1ms between samples.
Count the total number of light samples the program has read since it started.
¥ Optional: Instead of running a thread, you may use a Linux timer with 1ms period to
sample the ADC.

Independent of the history, compute the current average light level.
+ Compute this average using exponential smoothing over all light samples.
4 Weights the previous average at 99.9%.
Hint: Recompute this value each time a new sample point is read. You only need the
previously calculated average value and the latest sample. It has nothing to do with the
samples stored in the history. Make sure you set it correctly on the first sample.

Hints (optional, but recommended):
Your module which samples the light levels should likely have functions to:
+ Start the sampling thread (done once at startup, such as an init () function).
¥ Stop the sampling thread (done once at program end, such as a cleanup () function).
Encapsulate the sample buffer and all changes to it inside the module.
4 You can decide how to represent light values (raw ADC readings, or voltages).
4 You do not need to convert to lux (luminosity).
¥ Provide access to the history. The history is the samples taken during the previous 1s.
4 This is used by the UDP networking code and light level analysis code (later).
Provide the current average (filtered with exponential smoothing) light level.
Make sure that all parts of your code are thread-safe. Consider what data will be used
outside of the sampling thread (and how). How can you synchronize access?

4 Consider which modules and threads will be reading/changing the memory and
variables.

4 For modules that need a thread, have that module create a thread and manages
interactions with its data via accessor/mutator functions. Make these functions
lock/unlock the necessary mutex.

4 Big Hint: Here is a possible .h file interface you may use. You may use this exactly,
ignore it completely, or modify it in any way. Notice how it internalizes all use of the
background thread, isolating the rest of the code from having to worry about threads.

1 The idea is to store the previous second’s data in the history, rather than to require that the application always
provide access to all samples between the present moment and one second ago. Since the app can work with the
“previous” second, you can once per second copy/move the samples that have been collected from the current buffer
into the history buffer. All analysis and print-out features can then use this previous second of data.

This feature should reduce the amount of work you need to do because you don’t have to write a circular buffer.

Generated Oct 21, 2025, 09:56 PM Page 2/10 © Brian Fraser(modified M. Stewart)

Assignment 2: Light Dip Detector - V1 ENSC 351 with Matthew Stewart

// sampler.h

// Module to sample Light Levels in the background (uses a thread).

//

// It continuously samples the Light Llevel, and stores it internally.
// It provides access to the samples it recorded during the _previous_
// complete second.

//

// The application will do a number of actions each second which must
// be synchronized (such as computing dips and printing to the screen).
// To make easy to work with the data, the app must call

// Sampler_moveCurrentDataToHistory() each second to trigger this

// module to move the current samples into the history.

#ifndef _SAMPLER_H_
#define _SAMPLER_H_

// Begin/end the background thread which samples Light Llevels.
void Sampler_init(void);
void Sampler_cleanup(void);

// Must be called once every 1s.

// Moves the samples that it has been collecting this second into
// the history, which makes the samples available for reads (below).
void Sampler_moveCurrentDataToHistory(void);

// Get the number of samples collected during the previous complete second.
int Sampler_getHistorySize(void);

// Get a copy of the samples in the sample history.

// Returns a newly allocated array and sets “size to be the

// number of elements in the returned array (output-only parameter).
// The calling code must call free() on the returned pointer.

// Note: It provides both data and size to ensure consistency.
double* Sampler_ getHistory(int *size);

// Get the average Llight Level (not tied to the history).
double Sampler_getAverageReading(void);

// Get the total number of Light Llevel samples taken so far.
long long Sampler_getNumSamplesTaken(void);

#tendif

1.2 Listening to UDP

Listen to port 12345 for incoming UDP packets (use a thread). Later sections described some
values. Treat each packet as a command to respond to: reply back to the sender with one or more
UDP packets containing the “return” message (plain text).
Accepted commands
% help
4 Return a brief summary/list of supported commands.
+*°
4 Same as help
< count
4 Return the total number of light samples take so far (may be huge, like > 10 billion).
% length
4 Return how many samples were captured during the previous second.
+ dips
4 Return how many dips were detected during the previous second’s samples.

Generated Oct 21, 2025, 09:56 PM Page 3/10 © Brian Fraser(modified M. Stewart)

Assignment 2: Light Dip Detector - V1 ENSC 351 with Matthew Stewart

history
4 Return all the data samples from the previous second.
4 Values must be the voltage of the sample, displayed to 3 decimal places.
Values must be comma separated, and display 10 numbers per line.
4 Send multiple return packets if the history is too big for one packet.
» You can assume that 1,500 bytes of data will fit into a UDP packet. This works across
Ethernet over USB.

» No single sample may have its digits split across two packets.
+ stop

4 Exit the program.
4 Must shutdown gracefully: close all open sockets, files, pipes, threads, and free all
dynamically allocated memory.
¥ <enter>
4 A blank input (which will actually be a line-feed) should repeat the previous command.
If sent as the first command, treat as an unknown command.
All unknown commands return a message indicating it's unknown.
Error Handling
You do not need to do extensive error checking on the commands. For example, it is fine to
return the help message for the command "help me now!"
¥ Lower case commands must be accepted; optional to make it case insensitive.
¥ No command should be able to crash your program ("stop" will stop it; not crash it).
Testing
¥# Use the netcat (nc) utility from your host:
(host)$ netcat -u 192.168.7.2 12345
To exit netcat on the host, you'll have to press Control-C ("stop" only kills the program

on the target). Or, press enter a couple times when it is not connected to a server (the target)
for netcat to exit.

Sample output on the host via netcat
Commands sent from host are shown here in bold-underlined for ease of reading. The
history output was trimmed to fit the page.
The “just pressed enter” is added here; it’s not part of the actual output.
The history output has 20 numbers per line (word-wraps in this document).
¥+ Your output need not exactly match the sample, but it must have the same elements.

Generated Oct 21, 2025, 09:56 PM Page 4/10 © Brian Fraser(modified M. Stewart)

Assignment 2: Light Dip Detector - V1

ENSC 351 with Matthew Stewart

brian@PC-
help

Accepted
count
length
second.
dips
history
stop

<enter>

?
Accepted
count
length
second.
dips
history
stop
<enter>
count

samples
count

samples

samples
length
samples

samples
dips

Dips:
history
1.340,
.012,
.340,
.012,
.340,
.012,
.339,
.015,
.339,

2

PO ORORO
PO OROR O

.012,
.340,
.012,
.340,
.012,
.339,
.039,
.232,
.339,
.012,

oORrRr PP ORFrORFr ORF O
oOoOoORrOoORrORrRr O O"

stop

debian:~$ netcat -u 192.168.7.2 12345

command examples:
-- get the total number of samples taken.
get the number of samples taken in the previously completed

get the number of dips in the previously completed second.
get all the samples in the previously completed second.
cause the server program to end.

repeat last command.

command examples:
-- get the total number of samples taken.
get the number of samples taken in the previously completed

get the number of dips in the previously completed second.
get all the samples in the previously completed second.
cause the server program to end.

repeat last command.

taken total: 9670
taken total: 11589
<just pressed enter>
taken total: 12343
taken last second: 549
<just pressed enter>

taken last second: 552
1
.340, 1.339, 1.340, 1.340, 0.977, 0.028, 0.012, 0.011, 0.012,
.011, 0.011, 0.012, 0.012, 0.011, 1.303, 1.339, 1.340, 1.340,
.340, 1.340, 1.339, 1.339, 1.340, 1.340, 0.061, 0.012, 0.012,
.012, 0.011, 0.012, 0.012, 0.012, 0.011, 0.969, 1.339, 1.340,
.340, 1.340, 1.340, 1.340, 1.340, 1.339, 1.339, 0.051, 0.013,
.012, 0.011, 0.012, 0.012, 0.012, 0.011, 0.012, 1.111, 1.339,
.340, 1.340, 1.340, 1.340, 1.340, 1.340, 1.340, 1.340, 0.134,
.012, 0.011, 0.012, 0.012, 0.012, 0.011, 0.011, 0.012, 0.204,
.339, 1.339, 1.340, 1.340, 1.340, 1.340, 1.340, 1.340, 1.340,

TRIMMED ...
.012, 0.012, 0.011, 0.012, 0.012, 0.012, 1.337, 1.339, 1.339,
.340, 1.340, 1.340, 1.339, 1.340, 1.340, 0.708, 0.023, 0.012,
.012, 0.012, 0.011, 0.012, 0.012, 0.012, 0.011, 1.322, 1.339,
.340, 1.340, 1.340, 1.340, 1.340, 1.339, 1.340, 1.326, 0.020,
.013, 0.012, 0.011, 0.012, 0.012, 0.012, 0.011, 0.012, 1.329,
.340, 1.340, 1.340, 1.340, 1.340, 1.340, 1.340, 1.339, 1.252,
.013, 0.012, 0.012, 0.012, 0.012, 0.012, 0.011, 0.012, 0.012,
.339, 1.339, 1.340, 1.340, 1.340, 1.340, 1.340, 1.340, 1.340,
.096, 0.013, 0.012, 0.012, 0.012, 0.012, 0.012, 0.012, 0.012,
.475, 1.339, 1.339, 1.339, 1.340, 1.340,

Program terminating.

Generated Oct 21, 2025, 09:56 PM

Page 5/10 © Brian Fraser(modified M. Stewart)

Assignment 2: Light Dip Detector - V1 ENSC 351 with Matthew Stewart

1.3 Analyze History for Light Dips

Each second, the program must analyze the light samples that were captured by during the
previous second (the history). It must count the number of dips in the light level that are revealed
by the samples during that second. A dip in light level can be caused by blocking the light to the
sensor for a brief moment (such as waving your hand across over top of the board). The number
of light dips found in the previous second’s data is reported on the terminal (section 1.4), the 14-
seg display (section Error: Reference source not found), and via UDP (section 1.2).
¥ A dip is when the light level drops below a threshold (a certain amount below the current
average light level).
4 Another dip cannot be detected until the light level returns above the threshold.
4 A dip can be detected when the voltage is 0.1V or more away from the current average
light level. The current average light level is computed using exponential smoothing
(section 1.1).
4 Carefully consider if a lower light level leads to smaller voltages, or larger voltages.
4 Use hysteresis of 0.03V to prevent re-triggering a dip incorrectly if there is some noise
in the readings.
» i.e., The light level must drop by 0.1V to trigger a dip.
It cannot retrigger another dip until the light level first rises to 0.07 below the average
light level (or higher).
Then if the light-level drops back below 0.1V it retriggers a dip.
+# Testing hint:
4 Install a strobe light program on your phone! Section 1.5 adds a flashing LED emitter
to test it.

1.4 Terminal Output

Each second, print the following to the terminal (via printf ()). Use a fixed number of
characters for each value so the alignment does not change as values change.

Line 1:

4 # light samples taken during the previous second
4 How many hertz (Hz) the LED is flashing at (this is for the PWM, section 1.5)
4 The averaged light level (from exponential smoothing), displayed as a voltage with 3
decimal places.
The number of light level dips that have been found in samples from the previous
second
Timing jitter information (provided by periodTimer.h/.c) for samples collected
during the previous second (section 1.6)
» Minimum time between light samples.
» Maximum time between light samples.
Average time between light samples.
Number of times sampled
» Format:
Smpl ms[{min}, {max}] avg {avg}/{num-samples}
+ Line 2:

4 Display 10 sample from the previous second.

4 These values must be as evenly spaced across the collected samples as possible (for
example, if you have ~100 samples collected, display every ~10" sample). If there are
less than 10 samples from the previous second, display all the values.

4 Format: {sample number}:{value}

¥

v

Generated Oct 21, 2025, 09:56 PM Page 6/10 © Brian Fraser(modified M. Stewart)

Assignment 2: Light Dip Detector - V1

ENSC 351 with Matthew Stewart

Hint: Use a thread to do the analysis and print these values and then sleeps for 1s; or combine

these tasks with another module that runs every second; or use a Linux timer.

Sample output

#Smpl/s = 487 Flash @ 12Hz avg = 0.639V dips 9 Smpl ms[2.047, 2.283] avg 2.056/487

0:1.340 49:1.340 98:1.340 146:1.340 195:1.340 244:1.340 293:1.340 342:0.046 390:0.008 439:1.340
#Smpl/s = 488 Flash @ 16Hz avg = 0.528V dips 9 Smpl ms[2.048, 2.099] avg 2.056/488

0:0.198 49:0.008 98:0.008 146:1.339 195:0.008 244:0.008 293:0.007 342:1.340 390:0.008 439:0.443
#Smpl/s = 488 Flash @ 22Hz avg = 0.483V dips 14 Smpl ms[2.042, 2.102] avg 2.056/488

0:0.007 49:0.298 98:0.065 146:0.008 195:0.008 244:0.008 293:0.008 342:0.008 390:0.008 439:0.777
#Smpl/s = 488 Flash @ 29Hz avg = 0.501V dips 19 Smpl ms[2.027, 2.112] avg 2.056/488

0:1.340 49:0.276 98:0.008 146:1.339 195:1.334 244:0.007 293:0.008 342:1.340 390:0.006 439:0.006
#Smpl/s = 488 Flash @ 32Hz avg = 0.537V dips 27 Smpl ms[2.048, 2.141] avg 2.056/488

0:0.008 49:1.333 98:0.009 146:0.008 195:0.007 244:0.007 293:0.031 342:1.339 390:1.339 439:0.812
#Smpl/s = 488 Flash @ 37Hz avg = 0.559V dips 30 Smpl ms[2.046, 2.105] avg 2.055/488

0:1.339 49:0.008 98:0.008 146:1.339 195:1.051 244:0.008 293:1.339 342:0.008 390:1.340 439:0.008
#Smpl/s = 488 Flash @ 45Hz avg = 0.560V dips 34 Smpl ms[2.048, 2.103] avg 2.056/488

0:0.482 49:0.007 98:0.007 146:0.926 195:1.340 244:0.936 293:0.670 342:0.135 390:0.006 439:1.340
#Smpl/s = 485 Flash @ 45Hz avg = 0.611V dips 46 Smpl ms[2.041, 5.579] avg 2.065/485

0:0.008 49:1.340 97:0.012 146:1.340 194:0.012 243:1.339 291:0.013 340:1.340 388:0.013 437:1.340

1.5 Rotary Encoder controlling LED via PWM
Use the rotary encoder to select the frequency at which to flash the LED.
Rotary Encoder
4 Using the gpiod library, read the rotary encoder as discussed in class.
4 You must not run an external program for this.
+ PWM LED Control
The LED is controlled by PWM.
4 When the program starts up, start flashing at 10Hz (10 times per second).
4 For each clockwise step of the rotary encoder, increase the frequency by 1Hz. For each
counter-clockewise step of the rotary encoder, decrease the frequency by 1Hz.
Limit the frequency to be no less than OHz. You must support up to 500Hz.
If at 0Hz and rotating counter-clockwise, the frequency should stay at OHz. Then if the
user rotates clockwise it should immediately be counting back up.
If the PWM is already set to the desired frequency, do not re-set it because this will
cause a brief interruption to the LED’s flashing. i.e., if it’s at 10Hz and you are setting it
to 10Hz, do nothing.

1.6 Timing Jitter
The provided periodTimer.h/.c files are a ready-to-use module which supports recording the
timestamps of certain events, and then calculating some statistics about those timestamps.

You may modify these files as needed for recording the timing (see below); however, you may
not use this file to store your light-level samples: it is only for timing.

Expected Usage

1. InperiodTimer.h, create your own category of event in the Period whichEvent

enum. Note that you can use the provided one, and/or create your own.

2. Atstartup, call Period init ().

3. Each time the event of interest happens in your code, call the Period markEvent ()
function. Pass in the enum for the event you are tracking. The module will record the
timestamp for this event (stored internally).

Each time you want the current statistics, call the
Period getStatisticssAndClear () function for your event. Note that when
called, this function will wipe out the timestamps that it has been storing for this event

Generated Oct 21, 2025, 09:56 PM Page 7/10 © Brian Fraser(modified M. Stewart)

Assignment 2: Light Dip Detector - V1 ENSC 351 with Matthew Stewart

(hence not double-counting a time-stamp the next time you call this).
5. When shutting down, call Period cleanup ().

Generated Oct 21, 2025, 09:56 PM Page 8/10 © Brian Fraser(modified M. Stewart)

Assignment 2: Light Dip Detector - V1 ENSC 351 with Matthew Stewart

2. Debug program "noworky"

The file noworky. c is provided on the course website. This program does not do what its
comments say it will. You must debug it and fix it. The tool gdb will be discussed in class.
¥ Cross-compile the noworky for the target.

4 Compile using -g option (include debug symbols) in gcc. Recommended flags are:
-Wall -g -std=c99 -D POSIX C SOURCE=200809L -Werror

noworky generates the following output

. [root@Boardcon bin]# ./noworky
shown on the right.

noworky: by Brian Fraser
Initial values:

¥ Use gdbserver and the gdb cross-debugger to 0: 000.0 —=> 000.0

debug noworky. 1: 002.0 --> 010.0

4 Do a full debugging session using the gdb 2: 004.0 --> 020.0

text debugger. Using copy-and-paste, copy 3: 006.0 -=> 030.0

the full text of your debugging session into 4: 008.0 --> 040.0

as2-gdb.txt. Your debugging session 5: 010.0 --> 050.0

must show the bug, where it is, and how you S 8%2 : 8 :: 828 . 8
(could reasonably have) found it.)) ’

4 Even if you used a graphical debugger g: 016.0==> 080.0

9: 018.0 --> 090.0

initially to figure out the bug, you must still

. . Segmentation fault
use gdb to re-investigate the problem and

[root@Boardcon bin]#

show a full debugging process (not just a
listing on the program and say "There's the
problem!")
¥ Setup a graphical cross-debugger (such as Eclipse or VS Code). Use it to re-debug
noworky in a cross-debugging configuration (target device runs noworky, host runs the
graphical debugger)

Create a screen shot named as2-graphical . png showing the graphical debugger
debugging the program. If using Eclipse, this should show the debug perspective; if
using VS Code show the “Run and Debug” view.

4 A single screenshot won't show your full debugging session, but it proves that there was
a graphical debugging session, which is good enough for this assignment. Just make the
screen-shot show some representative part of your debugging session.

¥ Correct the bug in noworky . c and comment your change. For example,

// Bug was here: It was doing.... but should be doing....

4 Hint: The fix is no more than a one word change!

Submit the corrected noworky . c file to CourSys along with the screenshot and trace.

Generated Oct 21, 2025, 09:56 PM Page 9/10 © Brian Fraser(modified M. Stewart)

Assignment 2: Light Dip Detector - V1 ENSC 351 with Matthew Stewart

3. Deliverables

Submit the items listed below to the CourSys: https://coursys.sfu.ca

1. as2.tgz
Compressed copy of your project. Delete the build/ folder first so it’s much smaller.

Hint: Compress the as1/ directory with the command like:
(host)$ tar cvzf as2.tgz as2

2. as2-gdb.txt
3. as2-graphical.png

Please remember that all submissions will be compared for unexplainable similarities. Please
make sure you do your own original work; and not copied from GitHub. I have copies of all code
previously submitted, such as all copies on GitHub, and have a very efficient tool to find
similarities. Please take this opportunity to do great work!

3.1 Informal Milestones
% How to start

4 If you want to work with a partner, start looking for one!
4 Follow the guides to get started:

b Get the light sensor working.

» Get a HAL module working for the rotary encoder.

» PWM guide to learn how to control the LED emitter.

4 Read all sections of the assignment. Design HAL modules. Think about what modules
your application will have.

4 Try designing and coding the sections of this assignment one at a time.

» When you get the light sampling and UDP working, use the provided Python program
(run on the host) to show a graph of the samples you have collected.

4 Think about how you will shutdown the application correctly.
+ Half done
4 Sampling light levels.
4 Sending history samples via UDP, checked with Python program.
4 Maybe also counting dips in the last second of data?
+# Final checks
4 Review the learning objectives for this assignment (see webpage).
4 Complete the noworky debugging.
4 Double check your final ZIP file for correctness! No last minute refactoring bugs!

3.2 Revision History

¥ V1: initial version

Generated Oct 21, 2025, 09:56 PM Page 10/10 © Brian Fraser(modified M. Stewart)

