
Assignment 1: Build Environment - v1 ENSC 351

Assignment 1: Build Environment
Read the entire assignment before beginning!

This assignment is to be done individually.
Do not give your work to another student, do not copy code found online, and do not post
questions about the assignment online other than the course forum.
If you have previously taken the course, you may not re-use your previous solution.
Post questions to the course forum (see website); for questions related to your code, make
your post private.

1. Establish Communication
Setup:

Complete the Quick Start Guide for the BeagleBone Green (on course website).
See the website for a list of help-documents/guides for this (and later) sections.
The assignment describes what to do; the help-docs describe how to do it.

Setup a Linux machine (or virtual machine) for doing your work this semester.
Have the target and host on the same Ethernet network (physical or Ethernet over USB).
Note: If you have a typo in a command when capturing screen output (i.e., a screen capture
to a text file), don't worry about "correcting" it. Just repeat the command.
Commands to be executed in a Linux console on host PC are shown starting with(host)$,
on the target are shown with a (bbg)$. These are not part of the command; they just
represent the terminal prompt.

1.1 Ethernet Connection
Perform the following commands on the host in a terminal:

Display the host's internet configuration.
Ping the target and let in ping at least three times.
SSH to the target

Perform a directory listing of the /proc directory.
Display the kernel's version, up-time, and CPU info:
(bbg)$ cat version
(bbg)$ cat uptime
(bbg)$ cat cpuinfo
Exit the SSH session using the exit command.

Copy the text of your session to a new file named as1-hostViaIP.txt
You should be able to select the text in the terminal and copy-and-paste it into a text file
(try running gedit on the host to create the .txt file)

2. NFS and Custom Login Messages
This section has no deliverables on its own; the next section guides you through capturing the
required output.

2.1 NFS Mount
Mount your host's ~\cmpt433\public\ folder on the target using NFS1. See the website
for NFS guide.

1 Yes, please use the “CMPT433” paths because all the guides mention this. We will expect this directory
structure when marking.

Generated Sep 19, 2023, 10:48 PM Page 1/8

Assignment 1: Build Environment - v1 ENSC 351

Create a script in your target's home directory named mountNFS which mounts your NFS.
Hints:

Use echo to create the script file, such as:
(bbg)$ echo Da Command To Mount Goes Here > daFileToSaveInto
Change the permissions on script to be executable (change file name!):
(bbg)$ chmod +x daFileToRun

2.2 Root File System Customization
Make the following changes to the target's root file system stored in eMMC (on board):

Overwrite the /etc/hostname file with: yourSFUEmailAddress-beagle
Example: mbadali-beagle

Tip: View what the /etc/hostname file currently contains first, and make a backup
copy (just in case!)
(bbg)$ cd /etc
(bbg)$ ls hostname
(bbg)$ cat hostname
(bbg)$ cp hostname hostname.bak
Hint: hostname is owned by the root user, so you need to use sudo to edit it:
(bbg)$ sudo nano hostname
or you could use the following:
(bbg)$ echo yourMessage | sudo tee hostname

Change the hosts file:
(bbg)$ nano /etc/hosts

Change all mention of beaglebone to yourSFUEmailAddress-beagle
This will change the board's Linux terminal prompt once you reboot the board. Reboot
using the command:
(bbg)$ sudo reboot

2.3 ASCII Greeting
Change the root file system stored on the target to display an ASCII welcome message on boot.

These files display messages at start-up:
/etc/motd: Shown on after the user logs in (via serial or ssh).

First, create a short ASCII message:
Use a website such as: http://patorjk.com/software/taag/
Make the message include at least your first name. You may add anything else you like.
Pick a "font" which is readable and would fit on the terminal screen.

For the above website, click the "Test All" link on the left and pick a good one.
Copy the art into a new text file named motd in your host's shared folder:
~/cmpt433/public
Using NFS, copy motd from the host to your target's /etc/ folder.
Log out, using the exit command, to see your new message.

Hint: You’ll be seeing this message a lot because it displays anytime you successfully log into
your board! Make it something you want to see, like “Welcome!” or “Have Fun!”.

Generated Sep 19, 2023, 10:48 PM Page 2/8

Assignment 1: Build Environment - v1 ENSC 351

3. Hello world = Der-Finger-Poken & Der-Lighten-Blinken
(“Pressing buttons; turning on lights”)

3.1 Hello World
On the host, create a new directory for assignment 1’s source code:
~/cmpt433/work/as1

Note: ~ expands to the user's home directory, /home/morteza in my case.
You may actually put your code anywhere, such as in a Git repo.

On the host, create a new folder in public for sharing your compiled applications to share
them with the target via NFS:
~/cmpt433/public/myApps/
Create a hello program in cmpt433/work/as1/ (in C not C++!) using printf() to
display a message of the form: "Hello embedded world, from <your name>!"
Create a makefile that compiles your application and places the compiled file to the
~/cmpt433/public/myApps/ folder. Your makefile should be such that you can
compile and deploy (place executable to the myApps/ folder) using the following single
command:
(host)$ make
Simple Makefile (you may modify as desired):

all:

arm-linux-gnueabihf-gcc -Wall -g -std=c99 -D _POSIX_C_SOURCE=200809L -Werror hello.c -o
hello

cp hello $(HOME)/cmpt433/public/myApps/

3.2 Use LEDs & Read Buttons
Modify your hello program from above to also play the following LED and button game.

Generated Sep 19, 2023, 10:48 PM Page 3/8

Assignment 1: Build Environment - v1 ENSC 351

Display a hello-world welcome message

Continuously loop through the following steps to play the game:

1. Wait while user holds down USER button

2. Light up only LED 0

3. Wait a random time (between 0.5s and 3.0s)

4. If user is pressing the USER button already (too soon):
- Record response time as 5.0s
- Skip to “Light up all LEDs”

5. Light up LED 3 & start timer

6. When user presses USER button, stop timer
- If timer > 5s, exit with a message without waiting for button press

7. Light up all LEDs

8. Display summary:
- How many ms was the current response time?
- How many ms is the best response time so far this game?

Example Console Output

debian@BeagleBone:/mnt/remote/myApps$./hello
Hello embedded world, from Morteza!

When LED3 lights up, press the USER button!
New best time!
Your recation time was 123ms; best so far in game is 123ms.
Your recation time was 944ms; best so far in game is 123ms.
Your recation time was 196ms; best so far in game is 123ms.
Your recation time was 392ms; best so far in game is 123ms.
New best time!
Your recation time was 3ms; best so far in game is 3ms.
Your recation time was 5000ms; best so far in game is 3ms.
Your recation time was 1181ms; best so far in game is 3ms.
No input within 5000ms; quitting!
debian@BeagleBone:/mnt/remote/myApps$

Requirements
LEDs

The LEDs you are controlling are on the BeagleBone Green LEDs (not external LEDs).
You may assume that these LEDs are present (the
/sys/class/leds/beaglebone:green:usr# folders exist).
At startup, your C program must set each LED’s triggers
When your program finishes, leave the LED triggers as “none” and turn off all LEDs.

Generated Sep 19, 2023, 10:48 PM Page 4/8

Assignment 1: Build Environment - v1 ENSC 351

Follow the LED guide before writing the program.
Button

The button your C program is reading is the USER (also called “BOOT”) button on the
BBG.
You may assume that its GPIO pin has been exported (/sys/class/gpio/gpio##/
folder exists)
Your C program must execute config-pin to force the button’s pin to be treated as
GPIO (see sample code below).
Your C program must configure the button’s pin to be input.
Follow the GPIO guide before writing the program.

Use a Makefile to: cross-compile your program on the host, and copy the executable to
your NFS shared directory (~/cmpt433/public/myApps). Run the program via the
terminal on the target.
Sample console output is shown below (your output may differ). Note that it does not show
which LED is on, nor what the user input was. First and last line in capture are the
terminal.
Your code must be clean and maintainable.

Use functions to organize your code
All functions and variables must have good intention revealing names
Use comments effectively (OK to have no comments if your code reads like a book)
For this assignment, you may put all your code in one file, or you can choose to use
multiple .h and/or .c files.

Hints
Hint: For timers

To start a timer, record the current time as the start-time. Then compare the current time
to the start-time as your program runs.
Work with time in milliseconds.
Time often means elapsed time since ~1970, so with milliseconds we should use the
long long data type to ensure we don’t overflow a 32-bit int.
To print a long long, use:
long long x = 123456789LL;
printf(“Big number is %lld right!”, x);
You can get the current time with:

static long long getTimeInMs(void)
{
 struct timespec spec;
 clock_gettime(CLOCK_REALTIME, &spec);
 long long seconds = spec.tv_sec;
 long long nanoSeconds = spec.tv_nsec;
 long long milliSeconds = seconds * 1000
 + nanoSeconds / 1000000;
 return milliSeconds;
}

Generated Sep 19, 2023, 10:48 PM Page 5/8

Assignment 1: Build Environment - v1 ENSC 351

You can wait a number of milliseconds with:

static void sleepForMs(long long delayInMs)
{
 const long long NS_PER_MS = 1000 * 1000;
 const long long NS_PER_SECOND = 1000000000;

 long long delayNs = delayInMs * NS_PER_MS;
 int seconds = delayNs / NS_PER_SECOND;
 int nanoseconds = delayNs % NS_PER_SECOND;

 struct timespec reqDelay = {seconds, nanoseconds};
 nanosleep(&reqDelay, (struct timespec *) NULL);
}

Hint: To run a Linux command from in your C program, use:

static void runCommand(char* command)
{
 // Execute the shell command (output into pipe)
 FILE *pipe = popen(command, "r");

 // Ignore output of the command; but consume it
 // so we don't get an error when closing the pipe.
 char buffer[1024];
 while (!feof(pipe) && !ferror(pipe)) {
 if (fgets(buffer, sizeof(buffer), pipe) == NULL)
 break;
 // printf("--> %s", buffer); // Uncomment for
debugging
 }

 // Get the exit code from the pipe; non-zero is an error:
 int exitCode = WEXITSTATUS(pclose(pipe));
 if (exitCode != 0) {
 perror("Unable to execute command:");
 printf(" command: %s\n", command);
 printf(" exit code: %d\n", exitCode);
 }
}

Hint: Good function design will save you a lot of time throughout this course!
Create some initialization functions to initialize the button and LEDs.
Create some functions to give you high-level control of button and LEDs.

Generated Sep 19, 2023, 10:48 PM Page 6/8

Assignment 1: Build Environment - v1 ENSC 351

3.3 Run it via eMMC
On the target, copy your blinking hello program to debian user's home directory
(/home/debian/). This will make it available on the target even when you have not
mounted the public folder via NFS.
On the target, edit the debian user's .profile file. Add a call your hello program
when the user logs in.

The .profile file is in the user's home directory (/home/debian/); it is a script that
runs whenever the user logs in.
Edit .profile with:
(bbg)$ nano .profile
On a new line, enter the full path of the program (such as /home/name/myFileHere).

Hint: Have the call to hello be the last line in .profile. This will let the user skip
the blinking at log-in (Ctrl-c) and still have the rest of the script execute.

To exit nano (and save), press Ctrl+x, then type y (when asked to save the file), then
press ENTER to select the existing file name.
Use cat to check the file was edited correctly.
Note that file names starting with a period, such as .profile, are considered hidden
by Linux and will not show up in a file listing. Use the -a option for ls to show all
files:
(bbg)$ ls -a

Test your script by logging out and logging back in. Log out with:
(bbg)$ exit

3.4 This Section's Deliverable
Create an archive of your code, as described in the Deliverables section of the assignment.
Using SSH, capture the output of the following actions. Save the output into a file name
as1-bootTrace.txt:

Capture output of the following actions:
1. Login as debian, which will execute your hello light-blinking program.
2. Play a couple rounds of the game and then exit the program by letting it timeout (no

user input).
3. Mount your NFS shared directory using your script (previous section).
4. Use ls to display the contents of the shared directory mounted on the target which

contains your program (likely /mnt/remote/myApps).

Generated Sep 19, 2023, 10:48 PM Page 7/8

Assignment 1: Build Environment - v1 ENSC 351

4. Deliverables
Submit the items listed below to the CourSys: https://courses.cs.sfu.ca/

1. as1-hostViaIP.txt

2. as1-helloWorld.tar.gz
Compressed copy of source code and build script (Makefile).

Archive must expand into the following (without additional nested folders to find the
Makefile)

 <assignment directory name>
 |-- Makefile
 \-- <dependencies such as .c, .h files>

Makefile must support both the `make` and `make all` commands to build your
program to $(HOME)/cmpt433/public/myApps/
(Do not use relative paths for getting to the cmpt433/public/myApps/ directory
because the TA may build from a different directory than you.)

Hint: Compress the as1/ directory with the command like:
(host)$ tar cvzf as1-helloWorld.tar.gz as1

3. as1-bootTrace.txt

Please remember that all submissions will be compared for unexplainable similarities. If you
have taken the course before, you may not use your work from previous semesters as any part of
your solution. You are likely to find other student’s previous submissions online. Copying from
another source is academic dishonesty. Everyone's submissions will be quite similar, given the
nature of this assignment, but please make sure you do your own work; we will be checking.

Revision History:

V1: initial post

Generated Sep 19, 2023, 10:48 PM Page 8/8

	1. Establish Communication
	1.1 Ethernet Connection

	2. NFS and Custom Login Messages
	2.1 NFS Mount
	2.2 Root File System Customization
	2.3 ASCII Greeting

	3. Hello world = Der-Finger-Poken & Der-Lighten-Blinken
	3.1 Hello World
	3.2 Use LEDs & Read Buttons
	3.3 Run it via eMMC
	3.4 This Section's Deliverable

	4. Deliverables

