CMPT 276 Class 01: Introduction To The Introduction To Software Engineering

Dr. Jack Thomas
Simon Fraser University
Summer 2020
1. No, Really, What’s Software Engineering?

2. What Types of Software Are There And How Do We Develop Them?
Software Engineering Defined (Again)

• **Software Engineering**: The theories, methods, and tools for professional software development.

• It is a **discipline** concerned with all aspects of software production, from early specification to maintaining systems while in use.

• Good practices to solve problems within business and financial restraints.
Workplace Terminology

• **Programmer**: Anyone who writes code.

• **Engineer**: Technical professionals, often licensed.

• **Software Developer**: Applies engineering principles to the production of reliable, maintainable, and consistent software.
Why Is Software Engineering Important?

• Everything runs on software now.

• Imagine the pandemic without the ability to work from home.

(Note: some people DO have to live like that)

Image credits: https://en.wikipedia.org/wiki/Automated_teller_machine
https://en.wikipedia.org/wiki/Smartphone
Objectives Of Software Engineering

• Producing **reliable** systems **quickly** and **affordably**.

• The cost of engineering principles **scale** better than the individual craftsman approach.

• An ounce of prevention is worth a pound of cure: **fixing post-release** systems is expensive!
Software Process Activities

1. **Specification**
 Customer and developers define software features and constraints on its operation.

2. **Development**
 Design and program the software.

3. **Validation**
 Ensure software is what customer requires.

4. **Evolution**
 Modify software to reflect changing customer and market requirements.
Essential Attributes of Good Software

• Maintainability
 – Design software with evolution in mind.

• Dependability & Security
 – Must be reliable, secure, and safe. Must not cause physical or economic damage on failure.
 – Malicious users unable to access/damage system.

• Efficiency
 – Efficient use of resources: processing time, memory.

• Acceptability
 – Software must be acceptable its users: understandable, usable, and compatible with other systems.
Class Discussion: Comparing Software Development Challenges

Animal Crossing
- Maintainability
- Dependability
- Efficiency
- Acceptability

A Self-Driving Car
- Maintainability
- Dependability
- Efficiency
- Acceptability

1. **Stand-alone Applications**
 - Include all necessary functionality, does not need to be connected to a network.

2. **Embedded Applications**
 - Software control systems for hardware devices. There are more embedded systems than any other type of system

3. **Entertainment Applications**
 - Games!
More Types Of Applications

4. Batch Processing
 - Process data in large batches (Ex: payroll; monthly billing by a phone company)

5. Modelling and Simulation
 - For scientists and engineers to model complex physical process or simulations (Ex: car crashes, nuclear reactions, weather prediction)

6. Data Collection
 - Collect sensor data to send to other systems for processing.

7. Systems of Systems
 - Combine some other software systems. Ex: Car.
Even More Types Of Applications

8. Web Software
 - Reuses many system components
 - User interfaces limited by the web browser.

9. Software as a Service
 - Applications run remotely on the cloud. Users don't buy software, they pay according to use (Ex: Google docs, Amazon Web Services, etc)
 - Cloud ‘as-a-service’ types:
 a. Software as a Service (SaaS)
 b. Platform as a Service (PaaS)
 c. Infrastructure as a Service (IaaS)
General Software Issues

• Diverse Types of Systems
 – Distributed systems operate across networks, different types of computers, and many mobile devices.

• Changing Environment
 – Software has to keep up with rapidly changing business and society.
 – Must change existing software and rapidly develop new software.

• Security and Trust
 – Software is intertwined with all aspects of our lives, it’s essential we can trust it.
Diversity Of Needs

• **Common Needs**: All software projects should be professionally managed and developed.

• **Different Needs**: Different types of systems require different techniques
 – Games can be iterated on.
 – Life-critical systems need a complete specification first time!

• Select software engineering methods and tools by:
 – The **type** of application being developed.
 – The **requirements** of the customer.
 – The **background** of the development team.
Recap – Now You’re Introduced To Software Engineering!

• **Software Engineering Defined:** a discipline concerned with all aspects of software production.

• **Essential Software Attributes:** maintainability, dependability & security, efficiency, and acceptability.

• **Software Process Activities:** specification, development, validation and evolution.

• **Fundamentals of software engineering** are applicable to all types of system development.

• **Different types of systems** require different software engineering tools and techniques.
Next week – Version Control!