
CMPT 276 Exam Review

Dr. Jack Thomas

Simon Fraser University

Fall 2020

Exam Format

• 3 hours, timed, one attempt.
• Begins on SFU Canvas on December 14th at

7:00pm – as in, begins at 7:00pm sharp and ends
at 10:00pm.

• Exam requirements mean it must be completed
in parallel by everyone.

• Exceptions can only be made for medical or
extreme time zone reasons, talk to me
immediately.

• I will send out a reminder email before the exam.

Proctoring?

• I will be available on Discord to answer your
questions for the whole 3 hours, which is
where I will also post any class-wide
announcements I need to make during the
exam.

• There will not be “live proctoring” in the
manner of manually checking in over Zoom,
since the return on investment seems poor.

Reminder about Security & Academic
Integrity

• Canvas logs your IP address.
• Once again, the exam has been written with an

open-book format in mind.
• All standard rules about plagiarism and citing

apply here as they do in your assignments.
• Do not collaborate with other students or

otherwise accept help during your exam.
• MOSS will be used to compare submissions, and

students have been caught for plagiarising
already this term.

Content Overview

• The exam is cumulative (meaning it covers
content from across the course), but weighted
toward after the midterm.

• There will be coding questions concerning
Java and Android. Consider opening the
relevant IDEs to assist you.

• Both the assignments and the project will be
drawn from as well.

How to Review Course Topics

1. Consult your notes!

2. Review the lecture slides, including the
Midterm Review.

3. Follow up with the recorded lectures where
clarification would help.

4. Check out the sample assignment solutions
and Dr. Fraser’s videos.

9. Requirements Engineering

• Definition: The process of establishing the services
that a customer requires from a system and the
constraints under which it operates and is developed.

• User Requirements (written plainly so both users and
developers can understand them, like “Shall generate
monthly reports”) vs. System Requirements
(describing deeper technical requirements that users
may not understand or care about, like “access to
reports will be restricted to authorized users listed on
the management access control list”)

9. Requirements Engineering

• Functional Requirements (concrete, specific,
and well-defined, like “there must be a search
bar on the map screen that filters results”) vs.
Non-Functional Requirements (higher-level
abstract goals, like “runs smoothly”)

• In theory, completeness and consistency of
the requirements list is the goal of RE. In
practice, imprecision in language and
unknown requirements makes this impossible.

10. Requirements Document (Req Doc)

• The official statement of the system’s
requirements.

• Typically part of plan-driven approaches for
large and life-critical systems, Agile evolves
too quickly for a req doc to be useful.

10. Requirements Document (Req Doc)

• Specification is the process of drawing up the
requirements document.

• Design and specification are in theory
separate, in practice interleaved.

• Guidelines include using natural language in a
consistent way that incorporates domain
terminology and avoids computer jargon.

• Structured or Tabular Specification? Nah.

11. Requirements Elicitation

• Requirements
Engineering
Process:

1. Elicitation,

2. Analysis,

3. Validation,

4. Management

11. Requirements Elicitation

• Elicitation involves requirements discovery,
often through interacting with stakeholders.

• Interviews involve asking stakeholders for
requirements, in either a closed (pre-
determined question list) or open (letting the
stakeholder guide the conversation) format.

• Ethnographies involve immersing yourself in
the stakeholders’ workflow to better
understand their implicit knowledge.

11. Requirements Elicitation

• User Stories are a Scrum product that capture
product requirements in the format “As [user
role], I want [what], so that [why]”.

• Epic Stories are too high-level to complete in
one iteration, must be broken down into
smaller ones.

11. Requirements Elicitation

Analyze change
proposal for validity:
The requester can help
resolve any conflicts,
make changes, or
remove the request.

Assess effect of
proposed
change: Make a
decision to reject
or accept the
change request
based on analysis.

Modify Req. Doc.,
design, and
implementation:
Organize Req. Doc.
so changes are
easy to implement.

• Requirements Management is how you deal
with changing requirements.

12. System Modelling

• The process of developing abstract models of
a system, where each model shows a different
perspective of the same system.

• Perspectives:

1. External (context)

2. Interaction (use case)

3. Structural

4. Behavioural

12. System Modelling

• Context Model (External)

12. System Modelling

• Use-Case Diagram (Interaction)

12. System Modelling

<<Interface>>

• UML Class Diagram (Structural)

12. System Modelling

• State Diagram (Behavioral)

12. System Modelling

• Understand the Unified Modelling Language
(UML), particularly for structural class
diagrams and behavioural state machines.

• Model-Driven Engineering: An approach to
software development where models rather
than programs are the principal outputs of the
development process. Programs are
automatically generated from the models.

13. Implementation Issues

• Software’s primary technical imperative is
managing complexity through methods like
encapsulation.

• Code Reviews: Developers checking each
others’ code for bugs.

– Informal: Any time the code’s author walks
someone through how the code works.

– Formal: A scheduled, line-by-line review with a
checklist of defects to look for.

13. Implementation Issues

• Coding style guidelines are meant to alleviate
complexity by removing one more thing to worry
about. Style differences are often matters of
personal preference, consistency is more
important than any one decision.

• Reusing code is a standard development practice,
but it isn’t free – needs to be integrated into the
new system, and there’s a danger of trusting old
code too much even though you may uncover
new bugs that weren’t possible in the previous
system.

14. Legal and Ethical Issues

• Open-Source is publicly-available code
released under one of several possible
licenses:

– GPL: If included in a project, that whole project
must also be released under GPL.

– LGPL: Can use without making changes without
releasing the rest of the project.

– BSD/MIT: Can fully incorporate and change
without releasing the rest of the project.

14. Legal and Ethical Issues

14. Legal and Ethical Issues

• Non-Disclosure Agreements (NDAs) are
common parts of employment contracts in the
tech industry used to protect proprietary
information.

– Non-Compete clauses can limit your ability to
work in a field even after you leave the job.

– NDAs are not meant to protect illegal activity, but
they shift the burden of proof onto the
whistleblower.

14. Legal and Ethical Issues

• Professional Ethics: Standards of conduct
expected in a professional community above
and beyond the letter of the law. Typically
concern competency, confidentiality, and
honesty.

• Professional organizations in the software
field include the ACM and IEEE, which publish
their own code of ethics, but have limited
ability to police the industry.

15. Social and Economic Issues

• Professional ethics prefers to consider a limited set of
problems that ignores systemic issues.

• Software developers are workers who trade their
labour for wages and rarely share the profits, startup
and corporate culture obscures this.

• There are many ways your work can be exploited, but
this exploitation is not the product of individually
immoral managers, it is the natural result of
unregulated market pressures.

• To fight for your rights and livelihood, engage in labour
activism and build solidarity with your fellow workers.

15. Social and Economic Issues

• The tech industry has a significant demographic skew
in terms of race, gender, and class.

• This can result in narrow perspectives that can
reproduce bias within technology itself, and tensions
with local communities who host a closed and insular
tech industry.

• Women have a history of accomplishment in CS despite
also regularly being marginalized, and their
representation in the field today is low even for
STEM. The resulting unwelcome and even unsafe
environment is everyone’s responsibility to address
and change.

15. Social and Economic Issues

• The tech industry has many controversial impacts
on society, including automation of labour,
surveillance, the gig economy, autonomous
weapons/policing, and social media. The field
bears a collective responsibility for the social
consequences of these technologies.

• There is a history of idealism and radicalism in
tech, including the Open Source community,
hacktivism, cryptograph and privacy advocacy,
and more.

15. Social and Economic Issues

Image Credit:
It’s still Sega’s
Sonic the
Hedgehog what
do you want
from me.

16. Software Design Patterns

• A description of a common software design
problem and the essence of its solution.

• Commonly traced to the “gang of four” and their
book on design patterns, laying out 23 patterns
and 3 categories (creational, structural,
behavioral)

• Design patterns are best practices for situations
that commonly occur in object oriented
programming.

• They are abstract, do not have a single universal
format, and there is no one comprehensive list.

16. Software Design Patterns

• The Observer pattern is an example where a subject
class maintains a list of observers to be updated
whenever an event occurs, which usually includes a
way to attach and detach observers and send out an
update.

• The Publisher/Subscriber pattern is similar, but instead
has a broker class that acts as a middleman for the
posting and receiving of updates.

• While patterns are usually generalized, different
domains make more use of some than others,
generally requiring a developer to specialize in their
field’s preferred patterns.

17. Teamwork and Professional
Practices

• Groups are any collection of coworkers, teams
are in a social state of cooperation.

• Advantages: Tackle larger projects, higher quality,
learn more, react faster, sense of commitment.

• Life Cycle:
– Formed: First impressions.
– Early Days: First obstacles emerge.
– Normalized: Team settles into a rhythm.
– Productive: Produces the bulk of your work.
– (Bonus) Ascendant: Temporary peak output.
– Adjourning: Winding down a team.

17. Teamwork and Professional
Practices

• Tips: Mutual respect is fundamental, be
constructive, listen to criticism, keep your
commitments, communicate, create an agreeable
decision-making process that respects
disagreements but doesn’t avoid conflict.

• Teamwork isn’t always possible with every
group, recognize when a team is failing to form
and try to intervene, but also be prepared to
cover your own work individually.

• As for the job-related material, the exam for that
comes after you graduate.

