
CMPT 276 Class 16: Software
Design Patterns

Dr. Jack Thomas

Simon Fraser University

Fall 2020

Today’s Topics

• What are Software Design Patterns?

• Looking at the Observer and Publisher-
Subscriber patterns.

• Using patterns in professional software
engineering.

Software Design Patterns

• A description of a common
software design problem and the
essence of its solution.
– Allows discussion, implementation,

and reuse of proven software
designs.

• Design Patterns, Elements of
Reusable Object-Oriented
Software (1994): A pioneering
book on design patterns by four
authours: Gamma, Helm, Johnson,
and Vlissides (the “Gang of four”)

What Do They Look Like?

• Design patterns are best practices for situations
that commonly occur in object-oriented
programming.

• They are abstract, closer to high-level ideas than
specific code.

• They do not have a single universal format or
documentation style.

• There is no one comprehensive list or authority –
you can make up your own patterns if you want.

Design Pattern Example: The Singleton

• Already used in this course, and one of the
original 23 from Design Patterns.

• In brief: the Singleton allows a class to be
instanced only once.

• The pattern describes how to do this (having the
class itself control when it is instanced) and also
why (to coordinate between other objects).

• Instead of one specification, countless different
tutorials, examples, and graphs exist online
explaining it.

Classifying Software Design Patterns

• Design Patterns provided three categories.
• Creational: deals with how objects are created.

– Ex: The Singleton pattern.

• Structural: deals with how objects are related to
each other, particularly through inheritance and
interfaces.
– Ex: The Wrapper pattern.

• Behavioral: deals with how objects communicate
and interact with each other.
– Ex: The Observer and Publisher/Subscriber patterns.

The Observer Pattern: Motivation

• Imagine you are writing an automatic day-planner:
– It reads in the user's interests, plus information about the

world, and suggest what they should do.

• Possible design idea:
– You want to use different objects for cultural planning,

sports planning, and sight-seeing.
– Some objects bring in information about the world; your

planning-objects use these info objects.

• Challenge:
– All of these objects need to know the weather.
– Your weather object gets updates now and then.
– How do you tell all the objects new data is available?

Possible Idea

• Have the weather object call each info object:

• Bad because weather object is tightly coupled to each
planner!

• Every new planner you get, you'll have to change the
weather object's code, recompile, and re-run.

class Weather
void newDataUpdate() {
 String weatherData = ...;
 culturePlanner.update(weatherData);
 sportsPlanner.update(weatherData);
 sightseeingPlanner.update(weatherData);
 // Change here EVERY time you get a new planner.
}

The Observer Pattern

• An object, called the subject, is the source of events.

• One or more observer objects want to be notified
when such an event occurs.

• Solution:
1. Define an observer interface type.

2. All concrete observers implement it.

3. Subject maintains a collection of observers.

4. Subject supplies methods for attaching and detaching
observers.

5. Whenever an event occurs, the subject notifies all
observers.

The Observer Pattern

• This would allow objects to “register for
updates” with another object at run-time.

• Produces a one to many relationship:
– One object observed (called the subject)

– Many objects observing (called the observers).

• Great because it loosely couples objects:
– Object with something to report does not need a

hard-coded list of who to tell; it simply looks up its
observer list.

Observer Button Example

• Button knows of a click; Game Activity wants
to know.

• Activity creates anonymous OnClickListener
• Activity registers it with button as a listener.

• The benefit is
decoupling:
Button knows
nothing of the
program.

Publisher/Subscriber Pattern

• Another Behavioral-type pattern.
• A subject’s list of observers is replaced with

brokers that it publishes messages to.
• The observers can subscribe to these brokers and

then read the messages.
• Ex: The Robot Operating System (ROS) uses

topics like /velocity. High-level behaviour classes
publish new movement orders to that topic,
while other low-level classes that control the
robot’s hardware are subscribed to it and read
the messages as they come in.

Observer vs. Subscriber/Publisher

• What is the material difference between these
two patterns?

– The Subject knows it has Observers, and the
Observers know who they are observing. Both
Subscribers and Publishers only know about
Brokers and the Messages posted there.

• When would you use one over the other?

• Definitions are fuzzy, some believe Sub/Pub is
just a sub-type of Observer.

Software Design Patterns and
Professional Practice

• Well-known design patterns are generalized
across almost all software development.

• A common fundamental of technical
interviews.

• Design Patterns or Code Complete are good
places to start, but look for other patterns
popular in the field and in discussions online.

Domain-Specific Design Patterns

• Different sub-fields of software engineering
create their own patterns as needed.

• Ex: Android (and mobile development) makes
significant use of the Model-View-Controller
(MVC) and Model-View-Presenter (MVP)
patterns.

• Learning the design patterns common to a
particular field is an important step toward
professional specialization.

Recap: The Summary Pattern

• Software Design Patterns are a collection of common
best-practices for object-oriented programming.

• The Observer Pattern is a behaviour where a subject
class maintains a list of observers to notify whenever
they update their state.
– The Subscriber/Publisher Pattern is a variation where

messages are posted to a middleman instead of directly
from subject to observers.

• In professional software engineering, design patterns
are a basic part of your toolset and often tailored to
the domain you work with.

