
CMPT 276 Class 13:
Implementation Issues

Dr. Jack Thomas

Simon Fraser University

Fall 2020

Today’s Topics

1. Programming is complex; how can we
combat this?

2. Can we find bugs by reading each other’s
code?

3. Do different coding styles help?

4. Can software reuse solve our problems?

Limiting Software Complexity

• Writing software involves working out complex
interactions. (McConnell: Code Complete 2, 2004)

– Developer must reason about single bits up through
billions of bytes.

• Beyond human competency:

– Humans cannot cope with these 10 orders of
magnitude all at once.

– An analogy: think about a scientist trying to work with
subatomic particles and galaxies in one calculation.

Limiting Software Complexity

• Software’s Primary Technical Imperative:
Managing Complexity.

– We must simplify the problems in order to be able
to think about them.

• Use encapsulation to reduce cognitive load

– A good design allows you to forget about details
and work at higher levels.

– A bad design requires you to work at low and high
levels simultaneously, across multiple modules.

Complexity Example

• Compare the levels of abstraction in the
following two competing interface designs to
control SkyTrain:

A.

B.

int isSpeedReadingValid();
long getSpeedSensorReading();
void setBrakeBits(long brakeBitMask);
void setMotorRPM(long rpm);

double getSpeedInMps();
void emergencyStop();

// May speed up or slow down
void accelerateToNewSpeedInMps(double speedInMps);

Code Reviews

• A code review is having developers look at source
code to find bugs.

• Can be informal: a walk-through by the author to
show how code works.

• Can be formal: Devs use check-lists of defect
types to pre-review code.
– Have a meeting to review code line-by-line.

– Record all bugs found.

– Estimate total number of defects by counting #defects
found by 0, 1, or 2 devs during pre-review.

Practical Code Review Tips

• During a code review look for:
– logic errors (logic backwards, missing else, ...)

– poor error handling

– poor security (buffer overrun)

– poor readability/comments

– common errors (== vs =, null ptr, memory leak)

– requirements misunderstanding

• Can do a “code review” on design, test plans, test
code, deployment scripts, etc.
– Not just for shippable code.

Theory Side of Code Reviews

• Code Review Effectiveness (Jones 1996, in
McConnell 2004)
– Informal code reviews catch ~25% of defects

– Formal code reviews catch ~60% of defects

– Unit testing catches ~30% of defects

• If multiple devs do a code review, they find ~20%
overlapping bugs. Therefore, each dev finds
different bugs!

• Best to give devs a checklist of things to look for
(formal).

Coding Style

• Coding is hard! Developers must actively think
about:
– Architecture (design patterns, classes)

– Logic (algorithms)

– Low Level (data types)

– Syntactic Issues (spaces, naming, brackets)

• Syntactic concerns are often "religious" issues
– Devs feel passionate about tab size (2, 3, 4, 8)

– Not usually possible to “convert” someone to a new
style without a lot of effort.

Code Style Example

• Linux kernel style guide:
– Tabs are 8 characters, and thus indentations are also 8

characters. There are heretic movements that try to
make indentations 4 (or even 2!) characters deep, and
that is akin to trying to define the value of PI to be 3.

– (some text omitted...)
– Now, some people will claim that having 8-character

indentations makes the code move too far to the
right, and makes it hard to read on a 80-character
terminal screen. The answer to that is that if you need
more than 3 levels of indentation, you’re screwed
anyway, and should fix your program.

Style Guide

• A style guide formalizes coding style decisions.
– Consistent code style across project makes it faster to

read and modify code.
– Instead of syntactic disagreements, devs can think of

improving quality of code design and algorithms.

• Can address some common issues in a language
(what kinds of loops to use when, where to
declare different variables, whether function
brackets should have their own line, and other
fine-grained syntax issues)

• (Example style guide available on the course
website)

Reuse Cost

• Reusing well tested components can improve the
quality of your system.

• But, it’s not free.
– Must find and evaluate existing components.

– Must spend time to integrate into new system.

• Reuse can cause errors
– Some disasters caused by reusing software which had

an unknown bug.

– We tend not to test them well enough because we
trust the reused components too much.

Caution on Reuse

• Ariane 5 rocket: Initial test flight
self-destructed.
– Reused a module from Ariane 4

which converted a floating point
number to a 16bit integer.

– Ariane 4 rocket never encountered
an error.

– Exception handling was turned off
for efficiency.

– Both primary and backup
computers encountered the error
at the same time and shutdown.

Image credit: https://en.wikipedia.org/wiki/Ariane_5

https://en.wikipedia.org/wiki/Ariane_5

Caution on Reuse

• Therac-25: Canadian made radiation therapy
machine. Failure killed people.

– Reused buggy software that *relied* on hardware
safeties, which were left out in the later version.

• Reuse of components can lead to
overconfidence.

Summary

• Primary technical imperative: manage
complexity.

• Formal code reviews more effective at finding
defects than informal ones or unit testing.

• Use a style guide to free developer from
syntactic decisions.
– Can instead focus on higher-level issues.

• Consider possible reuse of existing software.
– Beware of over confidence.

