
CMPT 276 Class 12:
System Modelling

Dr. Jack Thomas

Simon Fraser University

Fall 2020

Today’s Topics

1. Why model a system?

2. How can we model...

A. the context of a system?

B. the interactions with the system?

C. the structure of a system?

D. the behaviour of a system?

3. Can we use models to generate a system?

System Modelling

• The process of developing abstract models of
a system, where each model shows a different
perspective of the same system.

• Usually models are graphical, such as the
Unified Modelling Language (UML).

• Modelling leaves out details, the challenge is
including only the right details.

A Word of Warning on Models

• “The map is not the territory,”

– Alfred Korzybski

• Like plans, the value and purpose of models
are hotly debated.

• Data-driven and machine learning approaches
claim to be moving us past models.

System Perspectives

• There are many perspectives on the same system. For
example a couch has concept art, a design sketch,
blueprints, assembly diagrams, and more.

• External Perspective: Model the environment (context)
where system is used.

• Interaction Perspective: Model the interactions
between a system and its environment.

• Structural Perspective: Model the organization of a
system or structure of its data.

• Behavioural Perspective: Model the dynamic
behaviour of the system and how it responds to events

Context Models

• Models what lies outside the system boundaries.
– Show other systems which use or are used by the new

system.
– Does not show the nature of the relationships: "who

uses whom?"

• Position of the system
boundary has a profound
effect on system
requirements, but is a
‘political’ judgment

Use Case Modelling

• Each use case represents a task with an
external interaction of value to the actor.

• Use cases show a very high-level view

– Actors (stick-figures): people or other systems.

– Actions (ellipses): the interaction.

• Can complete the model with a text
description of the interaction.

• Does not show the sequence of actions.

Use Case Diagram for Ordering Pizza

Note: The system being developed isn’t shown on the diagram, it IS the diagram.
Note 2: Tip your pizza guy, the world is on fire.

Use Case Exercise: CourSys

• Draw a UML Use Case diagram of CourSys for
the following:

– Actions: Grade submission, Submit, Configure
class, View grade

– Users: Student, Instructor, TA, Admin

Structural Models

• Structural models of software show the
organization of a system in terms of its
components and their relationships.

• Static structural models shows the structure
of the system design.
– Ex: Classes

• Use structural models of a system when
discussing and designing the system
architecture.

UML Class Diagram

• A diagram showing classes and relationships
between them.

Image Credit: https://en.wikipedia.org/wiki/Class_diagram

https://en.wikipedia.org/wiki/Class_diagram

Relationship: Aggregation

• The “Has-A” Relationship: Shows an object
composed of other objects. Ex: a cell-phone
has a screen, or has many buttons.

• Show the number, like
1, or 0..1, or *.

• Hint: This is usually for
an object’s fields.

Relationship: Dependency

• Class X depends on class Y if X may need to change if Y changes.
– Usually said: “X uses Y”
– If X knows of Y's existence, then X depends on Y.
– Shown as a dotted open arrow.
– Hint: Usually for arguments or local variables.

• Example:
class PizzaOrder {
 private List<Pizza> pizzas;
 // ...
 public void slicePizzas() {
 Slicer slicer = new Slicer();
 slicer.slicePizzas(pizzas);
 }
}

Relationship: Inheritance

• The “Is-A” Relationship:

– A cell-phone is a type of
phone: cell-phone
inherits from phone.

– Shown as a hollow
arrow pointing from the
subclass to the
superclass (more
general class).

Exercise: Label the Relationships

<<Interface>>

Exercise: UML Class Diagram

class Phone {}

class SimCard {}
class SimEjectorTool{}

class Battery {}
class LiPoBattery extends Battery{}
class LithiumIonBattery extends Battery {}

class CellPhone extends Phone{
 private Battery battery;
 private SimCard card;

 void changeSimCard(SimCard card, SimEjectorTool tool) {}
 void setBattery(Battery battery) {}
 int countInstalledApps()
}

Behavioural Models

• Models dynamic behaviour of a system as it
executes.

• Real-time systems are often event-driven, with
minimal data processing.
– Ex: microwave oven, alarm clock, etc.

• Event-driven modelling shows how a system
responds to external and internal events.
– System has states, and events (stimuli) cause state

transitions.

– Called a State Diagram, or FSM: Finite State Machine.

System Authentication Diagram

State Machines

• What are each of the following state machines
for?

Android

• Many events can occur
in the lifetime of an
Android activity.

• Trace the following:

– Creation

– While running, switch
to home screen.

– While in background,
killed by OS.

UML State Diagram Components

Example: Boss Fight State Diagram

• Imagine you are in a game battling an epic dragon.
Draw a state diagram for the “Boss”.
– Ground Phase: Dragon on ground (start).

• After 1 minute goes to air phase.

– Air Phase: Dragon in air, summons a minion.
• After minion is killed, go to ground phase.

– Burn Phase:
• When boss’s health reaches 30% he lands and starts breathing fire.

– Tamed: Boss at 0% health, players have tamed the dragon.
– Enraged:

• After 5 minutes, dragon heals fully, takes to the air and enrages
killing everyone.

– Boss Win: If all players die.

Model-Driven Engineering

• An approach to software development where
models rather than programs are the principal
outputs of the development process.
– Programs automatically generated from the models.

• Pros
– Work at a higher levels of abstraction.
– Cheaper port to new platforms: code is generated!

• Cons
– Models for abstraction not always suited to

implementation.
– Still somewhat theoretical, not well supported.

Model-Driven Engineering Example

• StarUML Generates C++
code from class diagram

– Generates all .h files and
function stubs in .cpp files.

• Umple is for Java.

// Generated by StarUML(tm) C++ Add-In
//
// @ Project : Untitled
// @ File Name : Zoo.h
// @ Date : 20/02/2014
// @ Author :

#if !defined(_ZOO_H)
#define _ZOO_H

class Zoo {
public:
 void listAnimals();
 int getId();
 string getName();
private:
 string name;
 int id;
};

#endif //_ZOO_H

Recap – A Model of Brevity

• Model: Abstract view of system; ignores some details
• System’s Context

– Context models show environment around system

• Interactions
– Use cases - external actor interactions with system

• Structural Models: Show system architecture
– Class Diagrams shows static structure of classes

• Behavioural Models: Dynamic behaviour of executing
system.
– State Diagram - States and internal/external events

• Model-Driven Engineering: Build the model, and then tools
automatically transformed to executable code.

