
CMPT 276 Class 08: Git Branches
and Workflows

Dr. Jack Thomas

Simon Fraser University

Fall 2020

Today’s Topics

• Two more advanced Git features:

– Using Issues to track features and bugs.

– Using Branches to work on those features and
bugs.

Issues In GitLab

• GitLab tracks Issues:

– Bug reports and feature requests

• Value of Issues

– Use as product’s backlog

– Assign issues to a dev to show who's working on it

– Update issues with extra info as needed

Branches

• Master: Main source code branch in a Git repo.
• Head: Latest code on master.
• Too chaotic to have many teammates constantly

committing code to master.
– Solution: Create feature branches

• Branch
– Do work on a separate track (the branch) from the

Master
– Commit changes to your branch
– When the feature is ready, merge the branch back to

the Master

Issue and Branching Overview

GL = done in GitLab
AS = done in Android Studio

• GL: Pick an issue to implement & create branch.
• AS: Checkout branch, make changes, commit & push

changes to the branch.
When feature is ready:
• AS: Merge Master to Feature branch (resolving

conflicts); commit/push changes.
• GL: Create merge request to merge branch to Master.
• GL: Branch is deleted when merge request accepted.

(manually remove merged local branch)

Issues and Branching

1. Create an issue for a bug or feature

– Implementing a feature or fixing a bug should
start with a GitLab issue.

– Ex: Issue 14: "Add help button to game activity"

2. Assign the issue to yourself

Issues and Branching

3. Create a feature branch in GitLab
– GitLab names the branch to start with the issue

number.

– Ex: 14-game-help-button

– In Android Studio:
a) Fetch to get new branch names: VCS -> Git -> Fetch

b) Checkout the branch: Bottom-right “Git” button.
Under remote branches, select your new one. On
sub-menu, select checkout

– Your work goes into the branch, not the master.

Issues and Branching

4. Work on your branch

– Do your work changing files

– Check-in your changes via Git:

• Add: changes ready to be committed

• Commit: put changes into local repo on branch

• Push: push to remote repo on branch

Issues and Branching

5. Merge Master to Feature Branch
– Get latest from master’s HEAD
– In Android Studio: VCS --> Git --> Merge Changes...
– Resolve merge conflicts; test, add/commit/push any

changes.

6. Submit a Merge Request via GitLab
– Create request to merge your branch back to master
– Since you already merged Master to Feature Branch,

there should be no conflicts.
– GitLab will close issues associate with merge request;

Otherwise, have message include “Fix #14”

Managing Merge Requests

• Team members see merge requests
– Code review: Comment on problems they see in

the code (possibly leading to new commits to fix)

– Thumbs-up/down for voting

• Repo Manager accepts the merge request
– Accepting merge requests will:

• Merge code to master (should be no conflicts)

• Closes associated issue (if any)

• Delete the source branch [optional; good practice to
clean up]

Recap – Merge Requested

• Branches and Workflow

– Create GitLab issues.

– Do work on a feature branch.

– GitLab merge request to merge branch to master.

