
CMPT 276 Class 05: How To Cope
With Change And Risk

Dr. Jack Thomas

Simon Fraser University

Fall 2020

Today’s Topics

• How can software projects manage change?

• What is prototyping?

• What is incremental development?

Coping With Change

• Change is inevitable in all large software projects:

– Business changes lead to new (or changed) system
requirements.

– New technologies open up new possibilities.

• This cost of change is equal to the cost of
reworking completed work (re-analyzing
requirements, design, recoding) plus the cost of
implementing new functionality.

Reducing The Cost Of Rework

1. Change Avoidance
– The software development process includes activities to

anticipate possible changes before significant rework is
required.

– Example: develop a Prototype system to show a key
(uncertain?) features to customers.

2. Change Tolerance
– The software development process can be designed to

accommodate changes at lower cost.
– Usually through Incremental Development.
– Changes may be in a future increment (no rework), or may

have to alter part of the existing system.

Throwaway Software Prototyping

• Prototypes are a test implementation of the
system. Use them to try out different options.

• "Throw-Away" Code

– Not a basis for the system.

– Prototypes could ignore things like code quality,
error-handling, or testability.

– Built to answer a specific question, not to see if
the whole system will work.

Software Prototyping

• A prototype can be used in:

– Requirements engineering to help with
requirements elicitation and validation.

– Design processes to explore options. For
example, a paper prototype of the UI.

Prototyping Process:

Define Objective Prototype Evaluate

Benefits of Prototyping

1. Improved system usability.

2. A closer match to users’ real needs.

3. Improved design quality.

4. Improved maintainability.

5. Reduced development effort.

Image credit:
 https://blog.balsamiq.com/3-1/

Example UI
prototyping
tool: Balsamiq

https://blog.balsamiq.com/3-1/
https://blog.balsamiq.com/3-1/
https://blog.balsamiq.com/3-1/

Prototype Development

• Prototypes leave out some functionality.
– Focus on poorly understood areas of the product;

– Error checking and recovery may be omitted;

• Focus on functional rather than non-functional
requirements.

• Prototypes should be discarded after use. They are
deliberately not a good basis for a production system:
– Very hard to tune it to meet non-functional requirements.

– Normally undocumented;

– Degraded structure from rapid change (no refactoring)

– Likely below software quality standards.

Incremental Delivery

• Development and delivery are broken down into
Increments

– Each increment delivers some required functionality.

• User requirements are prioritized, as they’re the
highest impact once delivery begins.

– Highest priority ones included in early increments.

• Once the development of an increment is started,
the requirements are frozen.

– Requirements for later increments continue to evolve.

Incremental Development and
Delivery

• Incremental Development
– Develop the system in increments.

– Customer evaluates increment before proceeding to
development of next increment.

– Normal approach used in Agile mehods.

• Incremental Delivery
– Deploy an increment for use by end-users.

– More realistic evaluation because of practical use.

– Difficult to implement for replacement systems as
increments have less functionality than old system.

Incremental Delivery

Develop the Increment Validate the Increment

Plan the Increment Deploy the Increment

Start Final system delivered

Incremental Delivery Advantages

• New functionality delivered with each
increment so system functionality is available
earlier.

• Early increments act like a prototype to help
elicit requirements for later increments.

• Lower risk of overall project failure.

• Highest priority requirements implemented
first and receive the most testing.

Incremental Delivery Problems

• Common Functionality
– Most systems require a set of basic facilities that are

used by different parts of the system.

– Hard to identify common facilities because
requirements are not defined in detail until an
increment is to be implemented

• Contracts
– Specification developed iteratively with the software.

– Complete system specification can be needed as part
of the system development contract.

Recap – Learning To Cope

• Processes should cope with change.

• Change Avoidance

– Throwaway prototyping helps avoid poor
decisions on requirements and design.

• Change Tolerance

– Iterative development and delivery allows changes
without disrupting whole system.

