CMPT 276 Class 05: How To Cope
With Change And Risk

Dr. Jack Thomas

Simon Fraser University
Fall 2020

Today’s Topics

* How can software projects manage change?
* What is prototyping?

 What is incremental development?

Coping With Change

 Change is inevitable in all large software projects:

— Business changes lead to new (or changed) system
requirements.

— New technologies open up new possibilities.

* This cost of change is equal to the cost of
reworking completed work (re-analyzing

requirements, design, recoding) plus the cost of
implementing new functionality.

Reducing The Cost Of Rework

1. Change Avoidance

— The software development process includes activities to
anticipate possible changes before significant rework is
required.

— Example: develop a Prototype system to show a key
(uncertain?) features to customers.

2. Change Tolerance

— The software development process can be designed to
accommodate changes at lower cost.

— Usually through Incremental Development.

— Changes may be in a future increment (no rework), or may
have to alter part of the existing system.

Throwaway Software Prototyping

* Prototypes are a test implementation of the
system. Use them to try out different options.

* "Throw-Away" Code
— Not a basis for the system.

— Prototypes could ignore things like code quality,
error-handling, or testability.

— Built to answer a specific question, not to see if
the whole system will work.

Software Prototyping

* A prototype can be used in:

— Requirements engineering to help with
requirements elicitation and validation.

— Design processes to explore options. For
example, a paper prototype of the Ul.

Prototyping Process:

Define Objective ——>{ Prototype > Evaluate

Benefits of Prototyping

1. Improved system usability.

2. A closer match to users’ real needs.

3. Improved design quality.

4. Improved maintainability.

5. Reduced development effort.
Example Ul I |mage credit:

_ ~== https://blog.balsamig.com/3-1/

prototyping
tool: Balsamiq >< < 18] >

https://blog.balsamiq.com/3-1/
https://blog.balsamiq.com/3-1/
https://blog.balsamiq.com/3-1/

Prototype Development

Prototypes leave out some functionality.
— Focus on poorly understood areas of the product;
— Error checking and recovery may be omitted;

Focus on functional rather than non-functional
requirements.

Prototypes should be discarded after use. They are
deliberately not a good basis for a production system:
— Very hard to tune it to meet non-functional requirements.
— Normally undocumented;

— Degraded structure from rapid change (no refactoring)
— Likely below software quality standards.

Incremental Delivery

 Development and delivery are broken down into
Increments
— Each increment delivers some required functionality.

* User requirements are prioritized, as they’re the
highest impact once delivery begins.
— Highest priority ones included in early increments.

* Once the development of an increment is started,
the requirements are frozen.
— Requirements for later increments continue to evolve.

Incremental Development and
Delivery

* Incremental Development
— Develop the system in increments.

— Customer evaluates increment before proceeding to
development of next increment.

— Normal approach used in Agile mehods.

* Incremental Delivery
— Deploy an increment for use by end-users.
— More realistic evaluation because of practical use.

— Difficult to implement for replacement systems as
increments have less functionality than old system.

Incremental Delivery

Develop the Increment —— Validate the Increment

A

v
Plan the Increment € Deploy the Increment

Start Final system delivered

Incremental Delivery Advantages

New functionality delivered with each
increment so system functionality is available
earlier.

Early increments act like a prototype to help
elicit requirements for later increments.

Lower risk of overall project failure.

Highest priority requirements implemented
first and receive the most testing.

Incremental Delivery Problems

 Common Functionality

— Most systems require a set of basic facilities that are
used by different parts of the system.

— Hard to identify common facilities because
requirements are not defined in detail until an
increment is to be implemented

* Contracts
— Specification developed iteratively with the software.

— Complete system specification can be needed as part
of the system development contract.

Recap — Learning To Cope

* Processes should cope with change.
* Change Avoidance

— Throwaway prototyping helps avoid poor
decisions on requirements and design.

* Change Tolerance

— Iterative development and delivery allows changes
without disrupting whole system.

