
CMPT 276 Class 04: Software
Processes

Dr. Jack Thomas

Simon Fraser University

Fall 2020

Practical, technical
Development skills Fun theory

Lecturers

Today’s Topics

1. What activities are part of software
development?

2. What are software process models?

Process Activities: The Software
Process

• Software Process:
– A structured set of activities required to develop a

software system.

• All software processes involve:
1. Specification – What will the system do?
2. Design & implementation – How will it do this? Also,

actually making it.
3. Validation – Does it do what the customer wants?
4. Evolution – Change the system to meet the customer's

changing needs.

• A software process model is an abstract
representation of a real process.

1. Software Specification
• Establishes what services are required and what constraints

exist on the system’s operation and development.

Is it technically and
financially viable to build
the system?

What do the system
stakeholders require and
expect?

Use gathered information
to write a requirements
document.

Check the validity of
the requirements

2. Software Design And Implementation
• The process to convert a specification into an

executable system.

System
Specification

Software
Design

Software
Structure

Implementation
Executable

System

• Design and implementation are closely related
and may be interleaved.

3. Software Validation

• Checks the system conforms to its specification
and meets customer’s requirements.

• Involves testing:
– Create test cases which ensure the system behaves

correctly for some component/feature.

– Works best if using real-world data.

• Can involve Formal Verification, logically proving
that a system operates correctly.
– Hard in practice; often restricted to critical

components of life-critical components.

Testing Stages

Individual functions
or objects are tested
independently. May
test coherent groups
of objects.

Testing of system as a
whole. Testing of
emergent properties is
particularly important.

Testing with customer
data, to check that the
system meets
customer goals.

4. Software Evolution

• Software is inherently flexible and can change.
• Software must change to meet new business

needs.
– Most of a project's time and cost associated with

maintenance

• The programming stereotype is that
development is creative and interesting, but
maintenance is dull.

• This is increasingly irrelevant as most new
systems are built on existing components.

• Line between old and new is blurring.

Software Processes

• Describe each process by:
– The activities in the process, such as designing how

data is stored, or the user interface, etc

– The ordering of these activities.

• All processes involve the four basic activities of
specification, development, validation and
evolution.

• Two big questions:
– Planning: Done up front? Or as you go?

– Delivery: Done at the end? Or multiple times?

Planning Paradigms

• Plan-driven processes:
– All process activities are planned in advance.
– Progress is measured against this plan.
– Also called Big Design Up Front (BDUF).

• Agile processes:
– Planning is incremental.
– Easier to change the process to reflect changing

customer requirements.

• Most practical processes include elements of
both plan-driven and agile approaches. There’s
no right or wrong software process

Delivery

• Single Delivery (at end)

– The software is only delivered to the customer
once it’s fully completed.

• Incremental Delivery

– The customer is given incomplete versions of the
software throughout development.

High-Level View of Software Processes

Software Process Models

• The Waterfall Model
– Plan-driven model – separate and distinct phases of

specification and development.

• Incremental Development
– Specification, development and validation are

interleaved.

• Agile
– Lightweight process to adapt to changing

requirements.

• Most large systems developed using a process
that incorporates elements from multiple models.

Waterfall Model Phases

Separate and distinct phases in the process.

Waterfall Model Problems

• Inflexible stages make it difficult to meet
changing customer requirements.
– “Must complete phase N before starting phase N+1.”

• Waterfall model is (somewhat) appropriate when
requirements are well understood and changes
are limited.
– Few business systems have stable requirements.

• Plan-driven nature of the waterfall model helps
coordinate the work.

• However waterfall is so rigid it is virtually never
used as a full methodology.

Incremental Development

• The waterfall model delivers the full system to
user at the end of the process.

• Incremental development delivers incomplete
intermediate versions.

Outline Description

Specification

Development

Validation

Released versions

Concurrent
activities

Incrementalism And Its Benefits

• Incremental development usable by either paradigm
– Plan Driven Models: Functionality of increments are

planned in advance.
– Agile Models: Functionality of early increments are

planned, later increments driven by customer needs.

• Reduced cost from changing customer requirements.
– Not as much code (plan?) written that must change.

• Quick delivery of useful software.
– Easier to get customer feedback on working software

rather than paper designs.
– Customer uses and gains value from the software earlier

than with a single end delivery process.

Incremental Problems

• Code Rot:

– Regular changes tend to corrupt a system’s
structure.

– Incorporating code changes becomes increasingly
difficult and costly.

– Time and money must be spent refactoring to
improve the software.

Refactoring

• A fancy word for making the code better
without adding new features.

• Refactoring Examples:

– Rename a poorly named variable.

– Split huge function into smaller ones.

– Improve the Object Oriented Design.

– Fixing parts of the code which have poor code
quality or poor readability.

Agile

• Agile methodologies are lightweight, they try to
reduce process overhead.
– Ex: Only as much documentation and planning as

needed.

• Develop application in short iterations
– ~1-3 weeks long.

– Select features at the start of each iteration.

– Deliver working software at end of each iteration.

• Very common in industry
– Whole slide-deck on it soon!

AGILE
Image credit: https://loanscanada.ca/loans/no-and-low-documentation-personal-loans-in-canada/

https://loanscanada.ca/loans/no-and-low-documentation-personal-loans-in-canada/
https://loanscanada.ca/loans/no-and-low-documentation-personal-loans-in-canada/
https://loanscanada.ca/loans/no-and-low-documentation-personal-loans-in-canada/
https://loanscanada.ca/loans/no-and-low-documentation-personal-loans-in-canada/
https://loanscanada.ca/loans/no-and-low-documentation-personal-loans-in-canada/
https://loanscanada.ca/loans/no-and-low-documentation-personal-loans-in-canada/
https://loanscanada.ca/loans/no-and-low-documentation-personal-loans-in-canada/
https://loanscanada.ca/loans/no-and-low-documentation-personal-loans-in-canada/
https://loanscanada.ca/loans/no-and-low-documentation-personal-loans-in-canada/
https://loanscanada.ca/loans/no-and-low-documentation-personal-loans-in-canada/
https://loanscanada.ca/loans/no-and-low-documentation-personal-loans-in-canada/
https://loanscanada.ca/loans/no-and-low-documentation-personal-loans-in-canada/
https://loanscanada.ca/loans/no-and-low-documentation-personal-loans-in-canada/
https://loanscanada.ca/loans/no-and-low-documentation-personal-loans-in-canada/
https://loanscanada.ca/loans/no-and-low-documentation-personal-loans-in-canada/

AGILE
Image credit: https://www.pcmag.com/encyclopedia/term/spaghetti-code

https://www.pcmag.com/encyclopedia/term/spaghetti-code
https://www.pcmag.com/encyclopedia/term/spaghetti-code
https://www.pcmag.com/encyclopedia/term/spaghetti-code

Image credit: https://www.datanumen.com/blogs/5-common-signs-computer-going-crash/

https://www.datanumen.com/blogs/5-common-signs-computer-going-crash/
https://www.datanumen.com/blogs/5-common-signs-computer-going-crash/
https://www.datanumen.com/blogs/5-common-signs-computer-going-crash/
https://www.datanumen.com/blogs/5-common-signs-computer-going-crash/
https://www.datanumen.com/blogs/5-common-signs-computer-going-crash/
https://www.datanumen.com/blogs/5-common-signs-computer-going-crash/
https://www.datanumen.com/blogs/5-common-signs-computer-going-crash/
https://www.datanumen.com/blogs/5-common-signs-computer-going-crash/
https://www.datanumen.com/blogs/5-common-signs-computer-going-crash/
https://www.datanumen.com/blogs/5-common-signs-computer-going-crash/
https://www.datanumen.com/blogs/5-common-signs-computer-going-crash/

DOC JACK’S

CYNICAL REALISM CORNER

 Many of these activities and models were developed to describe

how people already worked on software, not the other way around.

 Often used to justify or cover up flaws in the process.

 This goes both ways – both managers and programmers use buzz

words to try and deflect blame.

 Creating a chain of accountability is more important than

improving the final product.

Recap – The Process Of Summarization

• Software processes are the activities involved in
producing a software system.
– Requirements engineering: develop the specification.
– Design and implementation: transform requirements

specification into an executable software system.
– Software validation: check the system conforms to its

specification and meets the needs of its users.
– Software evolution: change existing software systems to

meet new requirements.

• Process models describe a sequence of activities:
‘waterfall’ model, incremental development, and
agile development.

