
CMPT 276 Class 03: Testing

Dr. Jack Thomas

Simon Fraser University

Fall 2020

Why Test?

• You don’t actually need me to tell you why
testing is important, come on.

Let’s pretend though

• You don’t want to be the engineer responsible
for this:

Image Credit: Honda’s Asimo, .gif found at http://iruntheinternet.com/05148

http://iruntheinternet.com/05148

Today’s Topics

1. What are common types of testing?

2. Testing like a User: through the UI.

3. Testing like a Dev: through the code.

4. JUnit 5: writing code to test code.

5. How to do effective unit testing?

6. What makes a good bug report?

Types of Testing

• Testing is meant to find bugs and prove the
product works

• For software, testing can be broadly split into:
1. Acceptance Testing

• Test overall application’s features
• “Is the program acceptable to the customer?”

2. Unit Testing
• Test each class in isolation
• “Does this class do anything wrong?”

• Testing can be done by a human (manually) or by
code (automatically).

White Box vs. Black Box

• When creating tests, do you have access to the
system’s code/design?
– Knowing the code can help you make better, more

complete tests
– Not knowing the code can help you see the big picture and

fix incorrect assumptions.

• White Box Testing
– Can see source code when writing tests.
– Also called clear box or glass box.

• Black Box Testing
– Have no access to system internals.
– Often for user interface testing.

Acceptance Testing

• Testing products from the customer’s
perspective.

– Are needed features included?

– Do the features work as expected?

• Can generate acceptance tests from user’s
requirements.

Ex: Requirements for a Scroll Bar

Requirements

• Scroll bar’s slider shows the
proportion of how much of
the content is shown in the
window.

• Scroll bar only visible when
all content can not be
shown in window at once.

Acceptance Tests

• With enough content to
need scroll bar, double
amount of content and
slider should be half as tall.

• With enough content to
need scroll bar, double
window height and slider
height should double.

Acceptance Testing in Practice

• Acceptance tests are often done manually.

• Acceptance testing can even roll into product deployment:
– In Alpha, early builds of software are made available to some

users under controlled circumstances.
– In Beta, software gets deployed to customers pre-release.

Quality Assurance Tester Job:
• Writing Test Cases and Scripts based on business and functional

requirements
• Executing high complexity testing tasks
• Recording and reporting testing task results
• Proactively working with project team members to improve the

quality of project deliverables

http://www.bctechnology.com/jobs/Avocette-Technologies/127103/Quality-Assurance-
Tester-(6-Month-Contract-and-Permanent).cfm

Unit Testing: Intro to JUnit

• Unit Tests mean testing a class in isolation.

• Purpose:

– Gives you reason to believe your code works.

– Should test ~100% of a class.

– Helps improve quality of code.

– Supports aggressive refactoring because you can
quickly check your code is correct.

JUnit Concept

• You create a test class which is paired with the
class you want to test.

• The JUnit test runner executes your test class.

Basic JUnit Architecture

• JUnit: “Test Runner” executes methods with a
@Test annotation.

Junit 5 Example
package ca.cmpt276.junit5;
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.*;

public class PuppyTest {
 @Test
 void testCreate() {
 Puppy rover = new Puppy("Rover", 100);
 assertEquals("Rover", rover.getName());
 assertEquals(100, rover.getWagRate());
 }

 @Test
 void testSetName() {
 Puppy rover = new Puppy("Rover", 100);
 rover.setName("Fluffy");
 assertEquals("Fluffy", rover.getName());
 }

 //... more tests omitted.
}

• Test runner executes all
methods with @Test
annotaiton

• Tests are done using Junit’s
Asserts

• New instance of PuppyTest
created for each JUnit test
method: Behaviour of one
does not affect the others

Test Runner

• Test runner executes @Test methods in test
class.

• Displays results and a coloured bar:

– Green-bar means all tests successful

– Red bar means some tests failed

JUnit 5 Asserts: Basics

public class JUnitAssertTest {

 @Test

 public void demoAssertEquals() {

 String name = "Dr. Evil";

 assertEquals("Dr. Evil", name);

 }

 @Test

 public void demoOtherAsserts() {

 int i = 10;

 assertEquals(10, i);

 assertTrue(i == 10);

 assertFalse(i == -5);

 }

 @Test

 public void demoAssertEqualsOnDouble() {

 double weight = (1 / 10.0);

 assertEquals(0.1, weight, 0.000001);

 }

 // Array support: assertArrayEquals()

}

Doubles have limited precision.
3rd arg is the “delta” to tolerate

JUnit 5 Asserts: Exceptions

• public class JUnitAssertTest {
• private void throwOnNegative(int i) {
• if (i < 0) {
• throw new IllegalArgumentException();
• }
• }
• @Test
• void testThrows() {
• assertThrows(IllegalArgumentException.class, () -> {
• throwOnNegative(-1);
• });

• }
• @Test
• void testNoThrows() {
• throwOnNegative(1);
• }
• }

Lambdas: needs Java 1.8+ compatibility
 File --> Project Structure --> Module -->
 Select "app" in list, select Properties
tab
 Set Source Compatibility to 1.8 (Java 8)
 Set Target Compatibility to 1.8 (Java 8)

Code likely in class being tested
(shown here for simplicity)

Use to test exception throwing.
Test fails unless it throws
IllegalArgumentExecption

Tests that exception isn’t thrown
when no error is present.

JUnit 5 Asserts: Disable

public class JUnitAssertTest {

 @Disable("DB does not yet support reconnecting.")
 @Test
 void testDBReconnect() {
// ... put your JUnit tests of the not-yet implemented code....
 fail(); // Automatic fail...
 }

}

IntelliJ Demo

1. Create JUnit Test Class:
1. Open class under test,
2. Click class name, alt-enter --> Create Test
3. Select JUnit 5, click OK
4. Select ...\src\test..... folder

2. Execute Tests:
1. Run --> Run... (alt-shift-F10)
2. Select your JUnit test class.

3. Run test: Run --> Run...; select whole test file or
individual tests

IntelliJ JUnit Video Tutorials: Basics:
https://www.youtube.com/watch?v=Bld3644bIAo&t
More: https://www.youtube.com/watch?v=xHk9yGZ1z3k&t

Effective Unit Tests

• Unit testing should be automated
• Design tests meant to prove a class will both:

– Work with expected normal inputs.
– Work with extreme or invalid inputs.

• Testing strategies:
1. Partition Testing

• Group together input values which are "similar"
• Test based on these groupings.

2. Guideline-based Testing
• Follow guidelines to choose test cases.
• Guidelines cover common programming errors.

1. Partition Testing

• Identify “groups”, as in regions of values in the input
data and output results which should behave similarly.
– Ex: Multiplying two integers.

• Input: Positive vs. negative input values

• Output: Positive vs. negative result.

• Each of these groups is an equivalence class:
– The program behaves in an equivalent way for each group

member.

• Test cases should be chosen from each partition.
– test the extremes of the partitions (min and max)

– test a middle value of the partition

Equivalence Classes

• Identify the equivalence classes (partitions):

/** Return a grade based on the percent:

 * 50 to 100 = 'P'

 * 0 to <50 = 'F'

 * otherwise throw an exception.

 */

char assignGrade(int percent);

2. General Testing Guidelines

• Think like a programmer.

• Choose test inputs that will:
– Generate all error messages

– Cause buffers to overflow;

– Force calculation result to be too large or small
(overflow & underflow).

• For example, testing with Arrays:
– Different # elements. Ex: 0, 1, 2, 100, 32000…

– Put desired element in first, last, in the middle…

Code Coverage

• Code Coverage is the % of each class’s lines of
code run during your test.

• The goal is ~100% Code Coverage
– All lines of code executed at least once.

– Quite hard to achieve (complex error cases,
asserts, ..)

– This should almost be the bare minimum: tests
run each line perhaps only once!

• Let’s run a quick demo in IntelliJ.

Test Code Quality

• Unit tests are an integral part of software
development. Write tests to same code
quality standards as the rest of the project.
– Only possible if you don’t think of tests as throw-

away or beneath your coding skill.

• Good code quality makes maintenance easier,
and keeps tests current and relevant

• Poor code makes tests obsolete fast.
Unreliable tests cause developers to lose trust.

Finding Many Bugs

• If you find a function which is quite buggy, don’t debug
it: Rewrite the function!
– Good unit testing only finds 30% of defects

– A hacked together routine indicates poor understanding of
its requirements:
• If many bugs are discovered now, then many bugs will be

encountered later!

• More tests cannot solve this problem:

• Trying to improve software quality by increasing the
amount of testing is like trying to lose weight by
weighing yourself more often. (McConnell 2004)

Bug Reports

• Submit a bug report when a defect is found.

Example Bug Report

Bug Report Suggestions

• The better the bug report, the more likely the
developer is to identify the problem and fix it.

• Example files:
– For an office application, or a compiler, provide an

example file which causes the problem.

• Screenshots:
– Show, don’t tell. It’s usually easier to grasp.

– Developers are often sceptical of problems they
can’t reproduce. Proof helps your case!

Image Credit: https://knowyourmeme.com/memes/pics-or-it-didnt-happen

https://knowyourmeme.com/memes/pics-or-it-didnt-happen
https://knowyourmeme.com/memes/pics-or-it-didnt-happen
https://knowyourmeme.com/memes/pics-or-it-didnt-happen
https://knowyourmeme.com/memes/pics-or-it-didnt-happen
https://knowyourmeme.com/memes/pics-or-it-didnt-happen
https://knowyourmeme.com/memes/pics-or-it-didnt-happen
https://knowyourmeme.com/memes/pics-or-it-didnt-happen
https://knowyourmeme.com/memes/pics-or-it-didnt-happen
https://knowyourmeme.com/memes/pics-or-it-didnt-happen
https://knowyourmeme.com/memes/pics-or-it-didnt-happen

Life Cycle Of A Bug

Image Source: Bugzilla
– lifecycle.

Bug Report Resolutions

• Some resolutions:
1. Fixed

2. Duplicate

3. Won't Fix

4. Cannot Reproduce

5. Working as Intended
• "ID-10-T"

• "PLBKAC"

6. Enhancement / feature request

Recap – Bugged About Testing

• White-box: Knowing the inside of the code.
• Black-box: Working only from input and output.
• Acceptance Testing for determining if your software’s

features satisfy the user.
• Unit Testing via JUnit, including how to use: assert...(),

@Test, @Disable, and assertThrows().
• Good JUnit tests:

– Partition testing using equivalence classes, or following
standardized test guidelines.

– Write high-quality, maintainable code.

• Bug reports should include a description, component,
steps to reproduce, expectations, environment info.

