
CMPT 276 Class 02: Version
Control

Dr. Jack Thomas

Simon Fraser University

Fall 2020

Remember this?

Image credit: https://www.amazon.com/Double-Density-MF2-DD-Diskettes-
Formatted/dp/B006NNGZ9S

https://www.amazon.com/Double-Density-MF2-DD-Diskettes-Formatted/dp/B006NNGZ9S
https://www.amazon.com/Double-Density-MF2-DD-Diskettes-Formatted/dp/B006NNGZ9S
https://www.amazon.com/Double-Density-MF2-DD-Diskettes-Formatted/dp/B006NNGZ9S
https://www.amazon.com/Double-Density-MF2-DD-Diskettes-Formatted/dp/B006NNGZ9S
https://www.amazon.com/Double-Density-MF2-DD-Diskettes-Formatted/dp/B006NNGZ9S
https://www.amazon.com/Double-Density-MF2-DD-Diskettes-Formatted/dp/B006NNGZ9S
https://www.amazon.com/Double-Density-MF2-DD-Diskettes-Formatted/dp/B006NNGZ9S
https://www.amazon.com/Double-Density-MF2-DD-Diskettes-Formatted/dp/B006NNGZ9S
https://www.amazon.com/Double-Density-MF2-DD-Diskettes-Formatted/dp/B006NNGZ9S
https://www.amazon.com/Double-Density-MF2-DD-Diskettes-Formatted/dp/B006NNGZ9S
https://www.amazon.com/Double-Density-MF2-DD-Diskettes-Formatted/dp/B006NNGZ9S

Version Control? Revision Control?
Source Control?

• All mean the same thing.

• A system to manage changes to electronic
documents (typically, code).

• Motivation: Coordinating changes to code
from multiple developers. How can we ensure
changes are not lost or incompatible?

• What does Git stand for?

• Nothing.

Git Basics – The Local Topology

• We start with the working directory on your
local computer.

• Then there’s the local code repository (“repo”)

Working
Directory

Local Repo

• The head is the latest version of the code.

– The latest code in the repo can be checked out
into the working directory.

– You then commit the changes to your local repo.

Commits

Checkouts

Git Basics – Remote Topology

• That local repository is synchronized with a
remote repository on a remote server, which
other developers on other computers can
synch their own local repositories to.

“who broke the build” “approve my pull request cowards”

“fork this, I’m out”

Git Is Distributed

• Git has no single centralized master repo, each
“local repo” is a full and complete repo.

– Can work off-line (on a plane) and still commit to
the local repo. Later sync up with the remote
repo.

• Often the remote repo is a dedicated Git
server such as GitHub or GitLab.

– These systems add extra team collaboration and
discussion tools (more later).

Work Flow Step 1: Setup

1. After making a working directory, initialize a
git repository in it.

2. Associate your local repo to a remote repo by
either:

a) Creating a repo in GitLab (gitlab.cs.sfu.ca) and

push some existing code to it

b) Cloning an existing repo to your local PC.

Step 2: When You Make Changes

1. Do some work in working directory
– Create new files, change files, delete files, etc.

2. Add Command
– Either adding new files to the repo or marking which changed

files to update.

3. Commit Command
– Commit all staged changes to local repo.
– Sometimes called “Check-in”

4. Push Command
– Transfer committed changes to remote repo.

5. Status Command (optional)
– View the state of local file changes

Image credit: The Simpson, https://frinkiac.com/

https://frinkiac.com/

Step 3: Other People Are Also Doing
Changes

• Other team members will push their own
changes to the repo which you then need.
– May be new / changed / deleted files

• Pull Command
– Get changes from remote repo and apply them to

local repo and working directory (move to head).

– If there are any conflicting changes, may need to do a
merge (more later).

• Log Command
– At any time, can view the changes people have made.

Git Tools
• Via Command Line

– Git is very often accessed via its command-line tools
– Git commands look like:

• Via GUI Integrated Tools
– Abstracts away some low-level details, but low-level

understanding is still required to understand it.
– Can be part of your IDE, like IntelliJ
– Can be integrated into a file system (TortoiseGit)

• In this course we’ll mostly be using Git via GUI,
but try it with the command line too!

git clone git@csil-git1.cs.surrey.sfu.ca:myTeam/daProject.git
git commit –m “I just did a whole load of work!”

Time For The Basic Git Demo!

1. Go to https://csil-git1.cs.surrey.sfu.ca/

2. Click “New Project”, name it something, and select
private.

3. Copy the git repository’s URL.

4. Go back to your project and select VCS -> Enable
Version Control Integration and choose Git.

5. Right click your project folder, go to Git and +Add.

6. Now go to VCS -> Commit and write a message.

7. Choose Commit and Push and designate the Remote
using the git URL you copied.

https://csil-git1.cs.surrey.sfu.ca/
https://csil-git1.cs.surrey.sfu.ca/
https://csil-git1.cs.surrey.sfu.ca/

Basic Git Sequence For Editing Code

1. Open your working directory before making any changes.
2. Pull any changes anyone else has made.

– Should bring you up to speed without causing any conflicts.

3. Do your work.
– Can’t pull from the remote with uncommitted changes.

4. Add and Commit changed files, updating the local.
5. Pull any changes made while you were working.

– Automatically merges files without conflicting changes.
– You’ll have to manually merge conflicts when required.

6. Push your merged result to the remote.
– Cannot push if others have pushed code: “current branch is

behind master”, “unable to fast-forward”

Merge Conflict Demo

• What happens when two team members
make conflicting changes on the same piece of
code?

1. Can’t pull any more while conflicts exist.

2. Need to commit my changes.

3. Now a pull will trigger a merge

4. Decide every highlighted conflict.

5. Once you’re done merging, add/commit/push.

• Bonus step: Communicate with your team!

.gitignore Files

• Lists file types to exclude from Git, ensuring
only the right kinds of files are excluded.
– Examples: Exclude .bak, build products, some IDE

files, other temporary and working files.

• Useful to avoid accidentally adding files in
your working directory you don’t want as part
of the repo.

• Just a plain-text file listing names, directories,
file extensions, etc., on a line-by-line basis.

.gitignore File Example

Commit Messages
• Commit messages must be meaningful!
• Line 1: Short summary (<70 characters)

– Capitalize your statement
– Use imperative: "Fix bug..." vs "fixed" or "fixes"

• Line 2: blank
• Line 3+: details; wrap your text every ~70 characters
• Ex:

• If pair programming during CMPT276, add your partner’s

user ID at start: “*pair: jackt] Make game state persist”

Make game state persist between launches and rotation.

Use SharedPreferences to store Game's state. Serialize using Gson library and
Bundle for rotation.

Reverting Changes

• Use Checkout to revert files (or the ‘Revert’
button in your IDE)
– Discards any uncommitted changes to a file.

– Overwrites the files in working directory with ones
from the local repo.

• Be careful when reverting! You’ll lose all
uncommitted changes!
– If in doubt, grab a backup copy of your work folder

using ZIP, then revert. Just make sure you don’t
commit the backup too!

Delete, Rename

• Deleting a file

– Delete file normally via the OS/IDE, then Add it to
Git. Git records it's now deleted.

– Will be deleted on everyone else's system when
they pull your changes.

• Renaming a file

– Rename file normally via the OS/IDE, then Add it
via its new name. Git will know.

– Git tracks files by their content, not by their name.

General Principles: Merge v. Lock

• Two competing approaches different teams
can take to version control on a project:

1. Checkout-Edit-Merge
– Allow multiple developers to work on the same

code concurrently, and simply manage merge
conflicts as they come up.

2. Lock-Edit-Unlock
– Locking avoids merge conflicts by preventing

others from changing the file, but adds pressure
to make changes quickly.

Image Credit: SimCity 2000, http://deathgenerator.com/#sc2k

http://deathgenerator.com/

Other Features

• Git works Atomically
– No part of a change occurs unless the whole change

happens .
– If there’s conflicts, your push won’t merge some and

skip others.

• Making a Tag
– Mark certain versions of certain files as a group. Ex:

"Files for Version 1.0 of product".
– Can then check out the code as it was at a certain

point, more structured than just winding back to a
particular commit.

Even More Features?

• What about Stashing, Fetching, Rebasing,
Branching, Forking…

• Git has many more advanced features, as well
as optional settings for the more basic
commands, but we’ll revisit them as needed.

Team Work

• It Makes The Dream Work

• …Unless you break the build. Don’t check in
something that breaks the build.

• Seriously.

How Often Should I Commit?

• Never Not Be Committing
– Commit little changes to local repo very often (hourly)
– Once some work is more stable, push all the changes

at once to remote repo (daily)

• Expectations for CMPT 276:
– Committing / pushing frequently gives visibility to

your contributions, making them easier to mark.
– In professional settings, your commits and pushes

would be tailored more to the needs of your team,
and likely add up several smaller contributions into
one bigger commit representing a more meaningful
contribution.

Some Notes On Comment Etiquette

• Don’t write journals in comments in source code
 // Removed Jan 2002 for V1.01
 // cout << "Dave; I wouldn't do that, Dave.\n";

– Put meaningful comments into checkins!

• Don’t leave dead code
 #if 0
 // Unneeded, but left 'cuz someone may want it...

 #endif
• Don’t sign your code

– // Written by Dr. Evil

Try Using Git Commands in the
Terminal!

• When you create a new project on GitLab and
want to push an existing project from your IDE
into it, GitLab suggests running the following
commands in the terminal:
– git init

– git remote add origin https://csil-
git1.cs.surrey.sfu.ca/jackt/GitDemo.git

– git add .

– git commit -m "Initial commit"

– git push -u origin master

(Optional) Adding an SSH key

• Alternative to logging into GitLab when
pushing.

1. Open Git GUI, go to Help, and select Show
SSH Key

2. Generate a key and copy it.

3. Go to your GitLab profile settings and then
SSH keys.

4. Paste the SSH key you just generated and
then Add it.

5. Start using the SSH link instead of the git URL

Recap – Commit This To Memory!

• Version control is a critical tool for development.
– Git is a popular, distributed version control system.

• Common Operations:
– clone, add, commit, push, pull, status, log, merge

• Git Project Management
– Avoid conflicts with locks, or else merge them as needed.

• Basic Features
– Use .gitignore, reverts, and Tags. Understand atomic

operations.

• Rules to Code By
– Commit often, write good messages, and don’t break the

build!

