
CMPT 276 Midterm Review

Dr. Jack Thomas

Simon Fraser University

Fall 2020

Midterm Format

• 1 Hour, timed, one attempt – no resubmission.

• Available on SFU Canvas on Wednesday,
October 28th.

• Must be completed that day during the
scheduled class time.

• If that isn’t possible, NOTIFY ME ASAP!

Security & Academic Integrity

• Canvas logs your IP address.

• By necessity, the midterm is open book, and
the questions reflect this.

• All standard rules about plagiarism and citing
apply here as they do in your assignments.

• Don’t share answers!

Content Overview

• The first eight units of the course, found on
the Notes page of the course website.

• At least one question drawing on your
knowledge of Java and Android.

• Some parts of the assignments (how to use
Git), but not others (the requirements
document in assignment 3).

How to Review Course Topics

1. Consult your notes!

2. Review the lecture slides.

3. Follow up with the recorded lectures where
clarification would help.

4. Check out the sample assignment solutions
and Dr. Fraser’s videos.

5. Maybe discuss them with your new project
groupmates?

1. Introduction to
Software Engineering

• The definition of Software Engineering

• Objectives of Software Engineering

• The Software Process Activities:

– Specification

– Development

– Validation

– Evolution

1. Introduction to
Software Engineering

• Essential Attributes of Good Software
– Maintainability
– Dependability & Security
– Efficiency
– Acceptability

• Types of Applications?
• General Software Issues

– Diverse types of systems.
– Changing environments.
– Security and trust.

• Diversity of Needs

2. Version Control

• Motivation

• Understanding the Topology

– Working Directory, Local Repo, Remote Repo

• The Basic Workflow

– Setting Up

– Making Changes

– Pulling Changes from Others

– Merging Changes Together

2. Version Control

• Merge vs. Lock

• The Purpose of a Tag

• Good Etiquette:

– Clear comments, frequent commits, don’t break
the build.

• Issues & Branches

• Terminal Commands? SSH keys?

3. Testing

• Acceptance and Unit Testing

• White Box vs. Black Box

• How to write a JUnit Test

3. Testing

• Partition Testing and Guideline-Based Testing

– Equivalence Classes

• Code Coverage and Test Quality

• Writing Good Bug Reports

Imagine if I made you fill this out

4. Software Processes

• The idea behind a software process model.

• The previously-introduced four activities:
– Specification

– Design and Implementation

– Validation

– Evolution

• How they combine to produce different
models (one after the other, interleaved, in
parallel).

4. Software Processes

4. Software Processes

• Waterfall Model

– Plan-driven, documentation-heavy

• Agile

– Planning-driven, lightweight

• Incremental Development

– Frequent releases, code rot

• Refactoring

5. Change Risk

• Understanding the cost of change, change
avoidance, and change tolerance.

• Prototypes

• Incremental Development & Delivery

6. SCRUM

• Backlogs, Iterations (“Sprints”), Ceremonies

• Scrum Roles:

– Scrum Master

– Product Owner

– Repository Manager

– Team Member

6. SCRUM

Plan what
features to
deliver.

Daily meeting
discussing
progress

Estimate
feature
sizes

Demo working
software

How can
team
improve?

7. Agile

• Plan-Driven vs. Planning-Driven
• Values (Inspect & Adapt)

– Individuals and Interactions
– Working Software
– Customer Collaboration
– Responding to Change

• Principles
– Customer Involvement
– Incremental Delivery
– People, not Processes
– Embrace Cahnge
– Maintain Simplicity

7. Agile

• Applicability

• Benefits & Drawbacks

• Extreme Programming

– Pair programming

– Test-Driven Development

8. The GitLab Workflow

• Creating Issues on GitLab

• Managing Branches for Features and Bugs

• How to handle a Merge Request

Android & Java

• Familiar with the basic syntax.

• Understand Model/View separation.

• Apply Object-Oriented Design and
Encapsulation.

• Know how to use Contexts, Intents,
SharedPreferences.

• Not going to ask about .xml or the graphical
interface parts of Android Studio.

