CMPT 276 Midterm Review

Dr. Jack Thomas
Simon Fraser University
Fall 2020

Midterm Format

1 Hour, timed, one attempt — no resubmission.

Available on SFU Canvas on Wednesday,
October 28t.

Must be completed that day during the
scheduled class time.

If that isn’t possible, NOTIFY ME ASAP!

Security & Academic Integrity

Canvas logs your IP address.

By necessity, the midterm is open book, and
the questions reflect this.

All standard rules about plagiarism and citing
apply here as they do in your assignments.

Don’t share answers!

Content Overview

* The first eight units of the course, found on
the Notes page of the course website.

* At least one question drawing on your
knowledge of Java and Android.

* Some parts of the assignments (how to use
Git), but not others (the requirements
document in assignment 3).

How to Review Course Topics

1. Consult your notes!

2. Review the lecture slides.

3. Follow up with the recorded lectures where

clarification would help.

. Check out the sample assignment solutions
and Dr. Fraser’s videos.

. Maybe discuss them with your new project
groupmates?

1. Introduction to
Software Engineering

* The definition of Software Engineering
e Objectives of Software Engineering
* The Software Process Activities:

— Specification

— Development

— Validation

— Evolution

1. Introduction to
Software Engineering

Essential Attributes of Good Software
— Maintainability
— Dependability & Security
— Efficiency
— Acceptability
Types of Applications?
General Software Issues
— Diverse types of systems.
— Changing environments.
— Security and trust.

Diversity of Needs

2. Version Control

* Motivation
* Understanding the Topology

— Working Directory, Local Repo, Remote Repo

* The Basic Workflow
— Setting Up
— Making Changes
— Pulling Changes from Others
— Merging Changes Together

2. Version Control

Merge vs. Lock
The Purpose of a Tag
Good Etiquette:

— Clear comments, frequent commits, don’t break
the build.

Issues & Branches
Terminal Commands? SSH keys?

3. Testing

* Acceptance and Unit Testing
* White Box vs. Black Box

* How to write a JUnit Test

3. Testing

e Partition Testing and Guideline-Based Testing

— Equivalence Classes

* Code Coverage and Test Quality

* Writing Good Bug Reports

magine if | made you fill this out

New bug from a
user with canconfirm
or a product without
UNCONFIRMED state

UNCONFIRMED

Bug is reopened,
was never confirmed

Bug confirmed or
receives enough wokes

Cwinership
is changed Cevelopment is

finished with bug

Developer @kes
prEsession

Pessible resolutions:
FIXED
DUPLICATE
WONTFIX
WORKSFORME
INWALID
REMIMD
LATER

ASSIGNED

Developrment is
finished wiith bug

RESOLVED .
Bug is closed

QA not satisfied
with solukion

QA verifies
solution worked

REOPEN E’”g 15 respened VERIFIED

Bug is reopened
Bug is closed

[CLOSED

4. Software Processes

* The idea behind a software process model.

* The previously-introduced four activities:
— Specification
— Design and Implementation
— Validation
— Evolution

* How they combine to produce different
models (one after the other, interleaved, in
parallel).

4. Software Processes

Single Incremental Delivery
Delivery

Plan Driven
(BDUF)

Evolutionary
Planning

(Planning)
Paradigms

4. Software Processes

Waterfall Model

— Plan-driven, documentation-heavy
Agile

— Planning-driven, lightweight
Incremental Development

— Frequent releases, code rot

Refactoring

5. Change Risk

* Understanding the cost of change, change
avoidance, and change tolerance.

* Prototypes

* Incremental Development & Delivery

6. SCRUM

e Backlogs, Iterations (“Sprints”), Ceremonies

* Scrum Roles:
— Scrum Master
— Product Owner
— Repository Manager
— Team Member

6. SCRUM

Daily Schedule for a One-Week Sprint

sovohY Tuesohy | WESWESORY Tuuesowy T FRIOAY

——-_---
S TRy IC-UP STRRO-UP 5 TRVC-UP 5 TRWO-UP
N5 15 wm. 18 e 5 min.
SFR.JT —————— e o —— _— -
FLAY I
2 s, 1‘ Demo working
—eee e software
Daily meeting :
discussing Estimate
progress feature S
sizes ST meview
Plan what l'
features to poe=
deliver. e —— How can

STorY team
Tisle improve?
| B

7. Agile

* Plan-Driven vs. Planning-Driven

e Values (Inspect & Adapt)
— Individuals and Interactions
— Working Software
— Customer Collaboration
— Responding to Change

* Principles
— Customer Involvement
— Incremental Delivery
— People, not Processes
— Embrace Cahnge
— Maintain Simplicity

7. Agile

* Applicability
e Benefits & Drawbacks

* Extreme Programming
— Pair programming
— Test-Driven Development

8. The GitLab Workflow

* Creating Issues on GitLab

* Managing Branches for Features and Bugs

* How to handle a Merge Request

GitLab Workflow G
Feature Branch, Merging Changes, Merge Request | JinAndroid Studio

GitLab issue.

~1_Assign issue to

.

‘“//,»

2 Create

: Teammate
GitLab closes Feature
~associated issue | Brahches

Create 1
“-m_____h\ —
M %ste r

{_J—,_,—P"

N !

self

feature branch J | | |
| | | '

' ' ', | Create & accept

" | Merge Request \

| |
1.Pullto update. | | | m
2. Checkout local | I } | \
| l 1. Commit any changes. \

feature branch. .'I 12 Pullto update.
| | | 3. Merge Master to
| '| Feature Branch. 1 Pull |

remrn e R Change files, |' |4.Resolve conflicts. 2 Remove local
2 ' commit, push. 5. Build and test. feature branch.

6. Commit/push changes.

commit, push.
. Switch to Master branch.

Android & Java

Familiar with the basic syntax.
Understand Model/View separation.

Apply Object-Oriented Design and
Encapsulation.

Know how to use Contexts, Intents,
SharedPreferences.

Not going to ask about .xml or the graphical
interface parts of Android Studio.

