
Assignment 2: Camera Depth of Field – Android

Pre-Assignment Notes

The late penalty is -10% per day late. After two days, late submissions won't be accepted.

This assignment can be completed individually OR in pairs, so do not share your code or
solution with others who are not in your group, and don't copy code you found online. There's still the
class's Piazza if you want to ask questions to the group, or you can ask during lecture, send an email to
the class's help account, or attend an office hour on Discord.

Note you can use any code shared by the instructor or anything from class or the tutorial videos
linked on the course website. You can get outside help from guides and other people, just try to make
sure they're teaching you how to solve the assignment, not writing the code for you. You won't learn
anything that way, and they can't write your exam or midterm for you. If in doubt about whether
something is plagiarism or not, don't be afraid to reach out and ask!

One tip: if you copy more than 4-5 lines of code from a guide or tutorial, try citing it in your
code with a comment, like //Code found at [url goes here].

Whether or not you're working in pairs, you will have to use the group submission feature
in Coursys to submit! There will be more details about this in the deliverables section of this
document, so don't ignore this.

1. Android App Overview

The goal of this assignment is to make an Android app where:

1. The user can add (and possibly edit or remove) lenses in the list of known lenses.
2. The user selects a lens and enters information about the photo they are taking. The app
captures and displays the depth of field for the photo.

If you haven't yet, be sure to complete the optional section 2 of assignment 1 to help you get set
up with Android. To remind you, the key links were the Java SDK (which you should have if you
completed assignment 1) and Android Studio (https://developer.android.com/studio/index.html)

IMPORTANT NOTES ABOUT ANDROID STUDIO: Unlike with IntelliJ, it's safe to use
the Gradle build system with the latest version of Android we're using in Android Studio. In fact, I'll
be using that build system for the sample solutions to assignments 2 and 3, so feel free to use it yourself
and follow steps that include it in any tutorial videos.

There can still be compatibility issues, however, due to the work-from-home situation meaning
that we're all working on different hardware. For this course, we will try to target Android 10.0, API
level 29 (also called Q). When setting up a virtual Android device through Android Studio to test your
app, I also recommend creating a standard-sized Pixel 2 phone with those same Android settings. If you
are unable to run an Android virtual device with these settings, you may need to look into the resources
for working remotely on a lab computer described on the course website's assignment page.

To learn Android programming, you can use a book on Android (see the course website for a
recommended book) or any online tutorial. The course website links a number of tutorials which cover
many of the Android topics necessary for this course.

https://developer.android.com/studio/index.html

2. Required Application Features

Implementing the required features can earn you up to 75% on this assignment. To get the
remaining 25%, you must also complete some optional features from the later list.

2.1 General Requirements

Create an Android application targeting the Android 10.0 SDK version 29 (Q). Use your
assignment 1 solution as the basis for your model for this assignment, though once the solution to
assignment 1 is posted you may also look at it to help fix any errors you may have had. You may edit
your files any way you need to support your application's needs.

Each activity should display a meaningful title. Do this in strings.xml. Activity files (.java
and .xml) must be well named, but need not match this document. Screen shots in this document are for
inspiration, as long as your application correctly implements the required features, any nice and usable
UI appearance/layout is fine. You do not need to handle screen rotation.

None of the things listed as hints are required, you may choose to do them or not. Create a
GitLab repo on csil-git1.cs.surrey.sfu.ca/ and commit your changes often (at least every 4 hours).

Hint: each time you create a new activity for your project, choose “Basic Activity”. This will
then always give you the same file structure. Delete the floating action bar if not needed.

2.2 Screen 1: Lens List

This is the initial activity displayed at startup. Display the lenses from your model. For each
lens, show the make, focal length, and maximum aperture.

Use your solution to assignment 1 to store the lenses. You may edit your code as needed. Use
the singleton design pattern1 with your lens manager (see the video on the website for more).

Use a Floating Action Button (FAB) to allow the user to add a new lens to the collection by
launching a new activity to enter lens details. Change the icon on the FAB to be a plus symbol (+), see
another video on the course website for more. The user may tap on a lens in the list to launch the
Calculate Depth of Field activity.

When your app starts up, pre-populate the lens manager with the lenses show in the screenshot
below:

Hints: You must make your lens manager class a
singleton; therefore, you'll be able to access your model
(collection of lenses) with code similar to:

LensManager lenses = LensManager.getInstance();
Lens lens = lenses.get(0);

Use a ListView or RecyclerView to show the list of lenses.
ListView is easier to use, RecyclerView is more modern and
flexible, but harder to use. Just use ListView unless you want a
challenge. The website has another tutorial on populating the list.

After adding a new lens, you'll need to refresh your UI lens
list. The simplest way to do this is to fully reinitialize the
ListView (create a new adapter for the ListView). Put this code in
its own method to avoid needless duplication. For how to pass
data to another activity, see the hints on the other activities!

1 The Singleton design pattern allows your model to exist the entire time your application is running. Android activities
come and go depending on a number of things, such as rotating the screen. If your activity just held onto the
LensManager object, then it would be destroyed every time the screen rotated and be inaccessible when you switched to
another activity. Singletons allow all activities to access the same instance of your model (LensManager)

2.3 Screen 2: Add Lens

Have entry boxes for the lens's required values. If using EditText widgets for data input, each
must have a hint for what goes in it (as shown in the screenshot below). You may use other data entry
widgets if you wish.

For focal length entry, only allow non-negative integer values. For aperture entry, if using a text
entry box, only allow non-negative floating point values. On the other hand, you can also use a drop-
down box, but check online for some of the most common aperture values.

Have a way of either accepting or cancelling adding the lens, such as Ok / Cancel buttons.
When we get to optional features, consider replacing with Back/Save arrows in the action bar at the top
of the screen.

Hints: Convert a String to an int or double with int x =
Integer.parseInt(“200”); or double y =
Double.parseDouble(“2.0”);. Note that if the string does not
include a number, it throws a NumberFormatException. You need
not handle validating the user's input – if the user doesn't add any
value and just clicks Ok, your program may crash, and that's okay.
See optional features for fixing this issue.

When adding a new lens, you must refresh your Lens List
activity's list. Have your Lens List activity launch this activity
with startActivityForResult(). When this activity finishes, it will
call your Lens List activity's onActivityResult() method, which
should refresh the list view by either reinitializing the list view by
recreating a new adapter, or calling notifyDataSetChanged() on
your adapters.

Requirements on Launching and Passing Data to an activity
Data is passed from one activity to another using an Intent.

Here's a video: https://www.youtube.com/watch?
v=SaXYFHYGLj4 This video has been linked directly in this
document instead of simply telling you it's on the course website
for extra emphasis: watch this video for how to create an intent in

a way that respects encapsulation.
For this app we can add the new lens directly into the model (via the Singleton), therefore it

does not matter what result we return from this activity.
The required steps to launching Add Lens activity from Lens List activity:
1. Add Lens provides a method for Lens List to call and get the launch intent:
2. Lens List calls startActivityForResult(...) to launch Add Lens.
3. Lens List overrides onActivityResult(...) to handle the “returned” data.

https://www.youtube.com/watch?v=SaXYFHYGLj4
https://www.youtube.com/watch?v=SaXYFHYGLj4

2.4 Screen 3: Calculate Depth of Field

Display the selected lens's description. Allow users to enter:
1. Camera's circle of confusion.
2. Distance to subject (in meters)
3. Selected aperture (the F number)
The UI must allow only non-negative decimal values and pre-populate the circle of confusion

with 0.029. When the three fields are filled, use a button to calculate and display the four depth of field
values.

Like Add Lens, you must use a public static method to encapsulate creating the Intent to launch
this activity, see the hints below for more.

If the entered aperture is less than the lens's maximum aperture, display an error message such
as “Invalid aperture”. It's okay to display “NaN” (not a number) if the user enters a circle of confusion
of 0. (This will likely happen automatically when you calculate the values).

Hints: Pass data to the Calculate activity using an Intent.
Pass in the lens's index for accesing it via the LensManager (the
Singleton!). For good encapsulation, have the Calculate activity
expose a method which creates the intent to start it. Pass this
function the data to be encoded into the Intent.

public static Intent makeLaunchIntent(Context context, int
lensIdx);

If trying to display a number in a TextVIew, note that
myTextView.setText(42); will attempt to load the strings.xml
resource which has number 42 into the TextView, which likely
does not exist and will crash your program. Instead, convert this
into a String: myTextView.setText(“” + 42);

Below are two more screenshots showing what the UI might look like when the user has
calculated all values, or entered an invalid aperture.

3. Optional Features

By completing one or more of these features, you can gain points toward the remaining 25% of
the grade for this assignment. Each feature has the score you can gain by completing it listed in the
title, and you can earn up to 30% (so potentially a final score of 105%) through completing more
optional features. You may only get marks for the optional features if the required parts of the
application work (or at least, work well enough).

If you attempt any of these features, your Lens List activity must state the features you added.
List the feature number and title. For example, have a TextView at the bottom of the screen listing the
optional features you completed. (Hint: Enter text into the TextView like Features\n5. Save data\n7.
Empty State.) See the screenshot below for an example.

You may also briefly mention how to access the feature if it isn't clear from the UI. You may
attempt any of these features in any order.

3.1 App Bar Buttons Via Toolbar (8%)

Use the Toolbar widget to give all activities an app bar
(also called the action bar) at the top of the activities to give at
least the following buttons:

1. Add Lens activity (and Edit, if you have it) should have
Back and Save.

2. Calculate activity should have Back.
When adding these buttons to the tool bar, you must

remove any duplicate buttons from the rest of the user interface.

3.2 Edit and Delete Lens (8%)

Support editing and removing a lens stored in the list of
lenses.

Hints:
From the Calculate activity, add a button to edit the

selected lens.
Re-use the Add Lens activity and just pass it extra

data (via an Intent) of which lens is to be edited.
From the Calculate activity, add a button to delete the selected lens.
Make sure that you update the Lens List activity's list view when the model changes.

3.3 Error Checking Input (5%)

Enforce at least the following constraints on user input:
1. Add Lens Activity:

a. Make length is > 0
b. Focal length is > 0
c. Aperture >= 1.4

2. Calculate Activity:
a. Circle of Confusion must be > 0

b. Distance to subject > 0
c. Selected aperture >= 1.4

When you detect an error, display a good error message (if appropriate, you may use a toast). In
the case of Add Lens (or Edit), prevent saving the lens until all values are valid. In the case of
Calculate, only calculate once all values are valid.

3.4 Auto-recalculate (5%)

On the Calculate activity, automatically recalculate all depth of field values when the user
changes any one of the input fields.

Remove any redundant buttons from the UI.
Hint: To recompute while the user is entering data, you'll need to pass a TextWatcher object to

the addTextChangedListener(...) method of each of the input EditText. In this
TextWatcher.afterTextChanged(...) call your code to recompute the depth of field values; other methods
in TextWatcher can be left untouched. You have three input EditTexts, so you can create one
TextWatcher object and then pass it to each of the EditTexts to reduce code duplication.

3.5 Save Data (10%)

Save all the lenses between executions of your application. When your app starts up, if there are
no stored lenses, add the sample lenses from Assignment 1. However, if there are saved lenses then
don't add these sample lenses.

Hints: You may want to use SharedPreferences, and to edit your lens manager class to support
working with SharedPreferences. You may also use external serialization libraries if you like
(Gson/JSON/etc).

3.6 Lens Icons (10%)

Significantly enhance the user interface by allowing the user to set an icon or image for each
lens. You may, for example, have 5 built-in icons the user can choose between. Change the lens list
activity to use a complex layout with the lens's icon/image and text. See the video on the course
website related to making complex list views.

3.7 Empty State (5%)

When your application has no lens to show, display a nice looking message on the main screen
instead of the list of lenses. The message must give the user some directions on how to start creating a
new lens.

4. Deliverables

Submit the following to Coursys (https://coursys.sfu.ca/):

1. A .zip file of your project, as per directions on the course website. If you worked individually, you
will still need to create a group in CourSys which consists of just you before you can submit your
.zip file. If you worked in a pair, you will need to create a group in CourSys and invite your partner.
Please ensure your partner accepts the invitation so that everyone gets credit for the work.

2. URL and Tag for your Git repository:

1. Add the instructor and TAs as “Developer” members of your repo:
1.Go to csil-git1.cs.surrey.sfu.ca and select your project.
2. On the left hand side, click the cog-wheel drop down (“Settings”)
3. Select “Members”
4. Add the instructor and TAs to your repo as developers. Use our email addresses
(jackt@sfu.ca, tirthp@sfu.ca, and kpathani@sfu.ca).

2. Create a tag for your submission, as follows:
1. In Android Studio, go to VCS -> Git -> Tag
2. Enter a name for your tag, such as final_submission
3. Leave Commit and Message blank.
4. Click Create Tag
5. Push changes to remote repo. On “Push Commits” dialog window, select “Push Tags”
6. You can check the tag was pushed correctly in GitLab online
7. If you resubmit, create a new tag as above and submit it via CourSys

3. Submit the Git URL and Tag name to CourSys. The Git url ends in .git and is used to clone
the repository, while the tag name is just the name you used in step 2.

Pleas remember that all submissions will automatically be compared for unexplainable similarities.
Everyone's submissions will be quite similar, given the nature of the assignment, but please make sure
you do your own original work, as we will be checking.

mailto:kpathani@sfu.ca
mailto:tirthp@sfu.ca
mailto:jackt@sfu.ca
https://coursys.sfu.ca/

