
CMPT 225: Data Structures &
Programming – Unit 31 – Exam Review

Dr. Jack Thomas

Simon Fraser University

Spring 2021

The April 19th Exam

• Monday, April 19th, at 12:00pm to 3:00pm
(that’s noon, not midnight!)

• One attempt, three hours, MUST be
completed during this time!

• Completed on Canvas, under the Quiz tab the
same way the Midterm was.

• If this doesn’t work for you, NOTIFY ME ASAP!

Format

• Roughly twice as long as the midterm.

• The same three types of questions:
– Very Short Answer Questions: Answers should be

a sentence or two.

– Short Answer Questions: A paragraph (or
equivalent).

– Code Questions: Questions that involve coding.
Highly recommend you open the IDE to a blank
project before you begin the midterm so you can
code there and then copy-paste your answer over.

Academic Integrity

• The midterm is open book again, meaning you’re
free to consult your notes, course material, or
even the open internet.

• You may NOT cooperate with anyone to
complete your midterm, especially other
students.

• Any source you use outside of course material
must be cited – looking code up is fine, lifting
code directly will be treated as plagiarism.

• WE HAD CASES OF THIS ON THE MIDTERM, so
double check!

Content

• The exam is cumulative, meaning there will be
questions from both before and after the
midterm.

• At least half of the exam will be based on
material we covered after the midterm.

• We won’t be taking questions directly from
the assignments, labs, or textbooks, but they
may be similar.

How to Study for the Exam

1. Attend this review (good job!)

2. Also, review the Midterm Review!

3. Consult your notes.

4. Check the slides

5. Watch the recordings.

6. Go through your code and the sample
solutions.

Adaptable Priority Queues

• A variation on Priority Queues that makes it
possible to remove entries other than the next
highest priority one, or swap the key or value of a
given entry.

• The Java PriorityQueue is already adaptable.

• Efficiency impact varies by PQ implementation:
the remove and replace functions are constant
for the unsorted list, O(log n) for the heap, and
constant for remove/O(n) for replace for sorted
lists.

Adaptable Priority Queues

• Achieved through location-aware entries,
which introduced us to the difference
between positions and entries.

The Adaptable Priority Queue ADT

• An extension of the Priority Queue data
structure that allows for removing and editing
arbitrary entries, not just the highest priority.

• Standard methods include all of the PQ ones, as
well as:
– Remove: Removes a given entry from the PQ, while

ensuring it remains ordered.
– replaceKey: Swaps the key of a given entry, then

adjusting the ordering as needed.
– replaceValue: Swaps the value of a given entry, which

probably also requires re-checking the ordering.

Maps

• A key-based data structure where all keys are
unique.

• Sometimes called associative stores, since
multiple entries with the same key might be
stored in the same spot.

• This leads to the idea of keys as indexes leading
to addresses.

• Available as an interface, not a standard class,
but with some implementations like HashMap.

The Map ADT

• A unique-key-based data structure, storing a set of key-
value pairs called entries.

• Standard methods include:
– Get: Return the value associated with the given key.
– Put: If a given key doesn’t exist in the map yet, add it and

the given value, otherwise replace the existing value of the
given key with the given value.

– Remove: Removes and returns the entry associated with a
given key.

– keySet: Returns a collection of all the keys stored in the
entries.

– Values: Returns a collection of all the values stored in the
entries.

– entrySet: Returns a collection of all entries.

Hash Tables

• A form of Map made from a Bucket Array and
Hash Function.

• Hash Functions turn keys into Hash Codes,
using methods like Polynomial Hash Codes.

• Compression Functions include the Division
Method and the MAD Method.

• Collision Handling includes Separate Chaining
and Open Addressing.

Hash Tables

• The Load Factor is the current proportion of
full buckets, and expanding the bucket array
when it’s too full is called Rehashing.

• Efficient with constant-time access for adding
and retrieving, like an array, but only when
collisions are kept low.

• Useful for counting collisions, caches, and
other quick-access memory solutions.

• Java has a Hashtable class built in.

Ordered Maps

• Maps, but can also retrieve subsets of entries
whose keys fall between bounds.

• Can be implemented with the Ordered Search
Table, using an ArrayList as the underlying
data structure to implement its methods.

• Also where we introduced Binary Search.

Ordered Map ADT

• A key-based data structure that can return entries
based on the relative ordering of its entries’ keys.

• Standard methods include the ones for any Map, as
well as:
– firstEntry: Returns the entry with the smallest key.
– lastEntry: Returns the entry with the largest key.
– ceilingEntry: Returns the entry with the smallest key

greater than or equal to a given key.
– higherEntry: As above, but only greater than.
– floorEntry: Returns the entry with the largest key less than

or equal to a given key.
– lowerEntry: As above, but only less than.

Map Implementation Choices

• There’s a recap at this point discussing some
of the different options for implementing
Maps and their efficiency in different
situations.

Map Method List HashTable Ordered Search Table

size, isEmpty O(1) O(1) O(1)

entrySet O(n) O(n) O(n)

get O(n) O(1)/O(n) O(log n)

put O(1) O(1) O(n)

remove O(n) O(1)/O(n) O(n)

Skip Lists

• A data structure suitable for implementing
Ordered Maps.

Skip List: The ADT

• A data structure that implements and extends the
Ordered Map ADT.

• Improves the average time of search and update
operations to O(log n) through random arrangements.

• Standard methods include those of the Ordered Map
ADT, along with:
– Next: The position following a given position on a level.

– Prev: The position preceding a given position on a level.

– Below: The position below a given position in a tower.

– Above: The position above a given position in a tower.

Dictionaries

• A Map-like data structure with non-unique
keys, which can store multiple entries with the
same key under one location.

• Remember that the Java Dictionary isn’t the
same as this one.

• Can also be implemented with an unordered
list, ordered search table, hash table using
separate chaining, or skip list.

The Dictionary: The ADT

• A non-unique-key-based data structure for
storing entries made of key-value pairs.

• Includes the following standard methods:
– Get: Returns an entry with a given key.
– getAll: Returns a collection of all entries with agiven

key.
– Put: Creates and adds a new entry with a given key

and value into the dictionary.
– Remove: Removes a given entry from the dictionary,

and returns it as proof.
– entrySet: Returns a collection of all entries.
– isEmpty: Return whether the dictionary is empty.
– Size: Return the number of entries.

Binary Search Trees

• Binary means each node in the Tree can have 0,
1, or 2 children.

• Search means the left children’s keys are less
than the parent, while the right children’s keys
are greater.

• Implements the Binary Search insight, making
them suitable for Ordered Maps and Dictionaries
through the use of Tree Search, an in-order
traversal.

• Don’t forget the blank external nodes.

AVL Trees

• A self-balancing extension of Binary Search
Trees.

• Solves the issue that while Tree Search bounds
search times to the height of the Tree,
nothing was keeping the height of the Tree in
check.

• Adds the Height-Balancing Property to
Rebalance the Tree after actions that might
unbalance it.

Multi-Way Trees

• Trees that can
have more
than one entry
per node, and
many children.

• By enforcing
an ordering on
the entries and
children, we
create the
Multi-Way
Search Tree.

2-4 Trees

• A self-balancing
variant of Multi-
Way Search Trees
that limit the
number of children
a node may have to
2, 3, or 4, and
requires all external
nodes to have the
same depth.

• This has the same effect of restraining the height
of the Tree to log n that AVLs have on BSTs.

• Adding and removing now has to rebalance the
Tree in the case of overflows and underflows.

Interlude on Advanced Trees

• Self-Balancing Trees are good candidates for
implementing some Maps, like Ordered Maps.

• Java includes TreeMap and TreeSet, for a Map
(and later, a Set) based on a Red-Black Tree,
which is another type of self-balancing Tree
we didn’t discuss (so you won’t be tested on).

Merge-Sort

• A comparison-based, Divide-and-Conquer
sorting solution.

• Divides the input into halves and recurses
until every element is alone, then sorts while
putting them back together again.

• O(n log n), because each “layer” of the
Merge-Sort Decision Tree takes O(n) and the
height of the Tree is O(log n)

Divide…

…and Conquer

You Know It’s Time For This Guy

Image credit: https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif

https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif

Quick-Sort

• A comparison-based, Divide-and-Conquer
sorting solution.

• Divides the input according to a randomly
chosen pivot value and then recurses, so that
when it’s time to start putting things back
together again they’re already in order.

• O(n log n), probably, if the randomly-chosen
pivot works out.

Divide…

…and Conquer

Consider a Worst-Case

Maybe By Now You Can Tell
What’s Going On Here

Image credit:
https://upload.wikimedia.org/wikipedia/commons/6/6a/Sorting_quicksort_anim.gif

https://upload.wikimedia.org/wikipedia/commons/6/6a/Sorting_quicksort_anim.gif
https://upload.wikimedia.org/wikipedia/commons/6/6a/Sorting_quicksort_anim.gif

Bucket & Radix-Sort

• If you limit the input range, you can use
Bucket-Sort to match an input directly to a
bucket, without requiring comparisons.

• Radix-Sort allows for sorting according to
multiple terms by layering Bucket- Sorts in
reverse order (e.g. alphabetical order).

• This can get sorting times down to O(n).

Sorting Generally

• Don’t forget Insertion-Sort (check Unit 4) and
Heap-Sort (implicitly what a Heap does).

• Sorting Stability is the property of whether a
particular Sort will keep the relative positions of
equal elements (i.e. will an already-sorted
sequence come out in the same order every
time).

• Sorting In-Place affects how much memory space
needs to be available for a Sort to work itself out,
since those that can be implemented in-place
don’t require any additional space.

Examples for Sorting In-Place

• Insertion-Sort can be done in-place, simply by
moving the entries around within the sequence
being sorted. This is how the version we
introduced in section 4 works.

Image credit: https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-
example-300px.gif

https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif

Summary of Sorting Algorithms

• Let’s do a quick run-down of our options:

1. Insertion-Sort (O(n2), stable, in-place)

2. Merge-Sort (O(n log n), stable, not in-place)

3. Quick-Sort (O(n log n)*, unstable, in-place)

4. Heap-Sort (O(n log n), unstable, in-place)

5. Bucket-Sort/Radix-Sort(O(n+N)/O(d(n+N)),
stable, not in-place).

Sets

• A high-level data structure that is simply made up of
elements and doesn’t care how they’re stored, added,
removed, etc.

• Mainly concerned about whether or not an element is
a member of the Set or not.

• All elements in a Set are unique.
• Ordered Sets let you establish some relative order

between elements, while Mergable Sets let you
combine different Sets through Unions, Intersections,
and Subtractions.

• A Partition is a collection of Sets with no elements in
common with each other.

The Set ADT

• A collection of distinct objects.

• Extremely general – no explicit notion of keys or even
an order, elements are just part of the set or not part
of the set.

• Include the following standard methods:
– Add: Adds a given element to the set.

– Remove: Removes (but does not return) a given element
from the set.

– Contains: Tells you whether a given element is in a set or
not.

– Iterator: Returns a collection of the elements in the set.

The Ordered Set ADT

• An extension of Set that includes support for a
total ordering of the elements.

• The standard methods are expanded:
– pollFirst: Return and remove the smallest element.
– pollLast: Return and remove the largest element.
– Ceiling: Return the smallest element that’s greater

than or equal to a given element.
– Floor: Return the largest element that’s less than or

equal to a given element.
– Lower: Returns the greatest element less than a given

element.
– Higher: Returns the smallest element greater than a

given element.

The Mergable Set ADT

• A Set which supports being combined with
other Sets.

• Adds the following methods:

– Union: Replaces the set with the union of itself
and a given set.

– Intersect: Replaces the set with the intersection of
itself and a given set.

– Subtract: Replaces itself with the difference of
itself and a given set.

The Partition ADT

• A collection of disjoint Sets.

• Reintroduces the notion of positions to Sets,

• Includes the following standard methods:
– makeSet: Create a single-element set out of a

given element and returns the position storing it.

– Union: Returns the union of two given sets, while
removing them.

– Find: Returns the set containing the element in a
given position.

Union-Find Structures

• A data structure equivalent to (but distinct
from) a Partition of Sets.

• Uses a combination of Union and Find
operations to build a data structure up from
individual elements to the desired number of
disjoint Sets.

Selection

• Finding an element in a Set according to its rank
(smallest, largest, median, etc) is called Order
Statistics.

• The generalized form is called the Selection
Problem.

• Prune-and-Search is a design pattern we can
apply to this problem to create an algorithm,
Quick-Select, that solves the problem.

• Quick-Select is essentially Quick-Sort for finding
an element by its rank.

Recap – The End of the Course,
but Not the End of the World

• The Midterm is on Monday at 12:00pm and must
be submitted by 3:00pm – three hours!

• It’s on Canvas, with a mix of theory and coding
questions, so open up your IDE.

• It is cumulative, covering material both before
and after the midterm.

• It’s open book, but no cooperating with others
or lifting solutions directly from the internet. Cite
any sources used.

• I’ll be available on Discord and in the virtual
lecture room if you need me!

