
CMPT 225: Data Structures &
Programming – Unit 30 – Selection

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• Order Statistics

• The Selection Problem

• Prune-and-Search

• Randomized Quick-Select

Finding Particular Elements in a Set

• A common thing we want from Sets is to find a
certain element – the smallest element, perhaps,
or the largest, or the one perfectly in the middle.

• In general, the process of finding an element in a
Set by its rank is called Order Statistics.

• Because Sets are such a high-level and general
data structure, we don’t have access to some of
the tools or assumptions (indexes, heap-
ordering, tree searches) that other structures do.

The Selection Problem

• The Selection Problem is the general form for
finding any one element in a Set by its rank
(first, last, middle), assuming some total order
of all elements.

• The overkill solution would be to sort the
entire Set – a process we know can take O(n
log n) from our work with sorting methods. If
we only want one element, ordering every
element is wasted effort.

Prune-And-Search

• Also called Decrease-and-Conquer, being related
to Divide-and-Conquer, this is another general
design pattern we can apply to create an O(n)
algorithm for the selection problem.

• The idea is to prune away a fraction of the
elements we know aren’t the ones we want and
then recurse on the smaller problem until it gets
down to some fixed size we can solve outright.

• Applied to the selection problem, this will lead us
to an algorithm for pruning away everything that
isn’t the rank of the element we want, until
we’re left with the one element that is.

Randomized Quick-Select

• An algorithm for finding the kth-smallest
element in an unordered sequence of
elements where a total order is possible.

• It has an expected O(n), but technically a
worst-case of O(n2).

• This might remind you of Quick-Sort, which
makes sense, because the algorithm is very
similar to Quick-Sort.

Algorithm quickSelect(S, k)):
Input: Sequence S of n comparable elements, and an integer k of [1, n]
Output: The kth smallest element of S
If n == 1
 return the (first) element of S
Pick a random (pivot) element x of S and divide S into three sequences:
 L, storing the elements in S less than x
 E, storing the elements in S equal to x
 G, storing the elements in S greater than x
If k <= |L|
 quickSelect(L,K)
Else if k <= |L| + |E| then
 return x
Else
 quickSelect(G, k - |L| - |E|)

Java Support for Quick-Select

• There is no built-in support for Quick-Select in
Java, nor is there a particular function that easily
recreates it.

• You could at least find the kth element, albeit
inefficiently, by getting the iterator (array version)
of the Set, sorting it, and then using the index, but
that won’t help if you actually need Quick-Select’s
speed.

• It’s such a simple algorithm to code though that you
could easily add it to a class that extends an
existing Set or inherits the Set interface if your
particular application has need of it.

Recap – A Selection of Topics

• Order Statistics are queries for Sets to retrieve an
element of a given rank.

• The general form of these queries is called the
Selection Problem, which can be solved through
sorting in O(n log n), but which we want a more
efficient solution to.

• We can apply the Prune-and-Search design
pattern to produce Randomized Quick-Select, an
algorithm that finds the kth-ranked element in a
sequence Set in an expected O(n).

