
CMPT 225: Data Structures & Programming
– Unit 29 –

Sets and Union-Find Structures

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• Sets

• Ordered Sets

• Set Theory Operations

• Mergable Sets

• Union-Find

Switching Back to Data Structures

• Now that we’ve explored sorting, let’s talk
about a type of data structure that doesn’t
need sorting at all – the Set.

• A Set is a very high-level data structure that
represents any collection of unique entries,
and that’s it.

• Sets are extremely general, being found high
in the inheritance hierarchy for several other
structures and classes we’ve seen so far.

Mathematical Sets

• The role Sets fulfill for Computer Science is
found in mathematics and Set Theory.

• They allow us to apply the algorithms and
rules laid down by that theory on collections
of data entries.

The Set ADT

• A collection of distinct objects.

• Extremely general – no explicit notion of keys or even
an order, elements are just part of the set or not part
of the set.

• Include the following standard methods:
– Add: Adds a given element to the set.

– Remove: Removes (but does not return) a given element
from the set.

– Contains: Tells you whether a given element is in a set or
not.

– Iterator: Returns a collection of the elements in the set.

Does Java Have a Set?

• Good news, it does!

• There’s the Set interface, which includes the
standard methods from the ADT.

Java’s Set

• This interface is inherited by multiple other
interfaces and implemented by a large
number of different classes using different
underlying data structures.

• This includes HashSet, which uses an
underlying Hashtable and is otherwise a
perfectly standard Set, or AbstractSet, which
provides a barebones abstract class version of
Set for you to fill in.

Implementing, Analyzing,
and Using Sets

• Being very high level, abstract, and tied to theory
means that Sets don’t say much about how
they’re implemented.

• As such, it’s not very meaningful to analyze the
performance of Set as an implemented class,
because it mostly exists in practice to be
extended or implemented by other data
structures.

• Its most useful practical application is providing a
common ancestor to different Set-based data
structures, so that methods that target or expect
Sets will work for all of them.

Re-Introducing Order

• The first specialization of Sets we’ll consider is
reintroducing order and comparisons,
unsurprisingly called Ordered Sets.

• Ordered Sets are still a very high-level
structure that doesn’t explain how exactly this
order is to be implemented or maintained, it
just asserts that the elements in the Set can
now be ordered and gives you methods that
assume this is true.

The Ordered Set ADT

• An extension of Set that includes support for a
total ordering of the elements.

• The standard methods are expanded:
– pollFirst: Return and remove the smallest element.
– pollLast: Return and remove the largest element.
– Ceiling: Return the smallest element that’s greater

than or equal to a given element.
– Floor: Return the largest element that’s less than or

equal to a given element.
– Lower: Returns the greatest element less than a given

element.
– Higher: Returns the smallest element greater than a

given element.

How About Java and Ordered Sets?

• The NavigableSet interface adds the Ordered Set
methods to the Set interface.

• This interface is implemented by both
ConcurrentSkipListSet, which implements an
Ordered Set as a Skip List, and TreeSet, which
implements it as a Red-Black Tree.

• These are both still descendants of Set, which
means both of them, HashSet, and the other Set
variants can be cast as Sets and used by methods
or classes that take in Sets.

It’s Time To Do Math To Sets

• Now that we’ve introduced the Set basics, we
can start applying the rules found in Set
Theory to them.

• The first algorithms we’ll consider are ones
that manage combining two sets in different
ways:
– Union

– Intersection

– Subtraction

Unions

• The Union of two sets is pretty straightforward
– it combines two sets into one.

• Don’t forget, since the elements of a set are
unique, there shouldn’t be any duplicates.

(3, 2, 6) U (5, 6, 9) -> (3, 2, 6, 5, 9)

Intersections

• The Intersection of two sets will give you the
subset of elements that appeared in both
sets.

(3, 2, 6) Π (5, 6, 9) -> (6)

(it’s actually supposed to be the upside-down capital U but I couldn’t find that one)

Subtractions

• Subtracting one set from another gives you
the difference, that is, the elements of one set
that did not appear in the other.

(3, 2, 6) - (5, 6, 9) -> (3, 2)

Sets and the Generic Merge

• All three of these methods can be described as
types of a generic Merge algorithm, which looks
essentially like the Merge step from our Merge-
Sort algorithm.

• You take both Sets to be merged, compare the
next elements of both, and decide what to do
with them based on the outcome of the
comparison and the type of Merge you’re doing.

• This general description gives us the Set subtype
of Mergable Sets.

The Mergable Set ADT

• A Set which supports being combined with
other Sets.

• Adds the following methods:

– Union: Replaces the set with the union of itself
and a given set.

– Intersect: Replaces the set with the intersection of
itself and a given set.

– Subtract: Replaces itself with the difference of
itself and a given set.

Mergable Sets, Java,
and Implementation

• There isn’t a particular Mergable Set class or
interface in Java because each of the practical
results we describe from the theory can be
achieved through using regular functions, like
using .addAll to unite two sets.

• Mergable Sets are still a useful data structure
for bridging theory to practice, however, and
gives us a chance to introduce the Template
Method design pattern.

Implementing the General Merge

• Since we know that the three ways to
combine Sets are variants of a general Merge,
we can write a general Merge function that
can then be specialized as needed.

• Writing functions in this way that minimizes
the amount of duplication between very
similar methods follows the Template Method
approach, where a mostly-complete template
is used as the basis for each variant of Merge.

• Now we only need to fill in aIsLess, bothAreEqual,
and bIsLess as each method requires. For
example, for Union:

What About Splitting Sets
Instead of Merging Them?

• Since the Merge operations show how to
combine Sets in different ways, we should also
have a way to divide them.

• A Partition describes a collection of disjoint
Sets, meaning separate sets with no elements
in common.

• It’s also another distinct type of data structure
with its own methods.

The Partition ADT

• A collection of disjoint Sets.

• Reintroduces the notion of positions to Sets,

• Includes the following standard methods:
– makeSet: Create a single-element set out of a

given element and returns the position storing it.

– Union: Returns the union of two given sets, while
removing them.

– Find: Returns the set containing the element in a
given position.

Partitions as Union-Find Structures

• Partitions aren’t just another layer of structure
that goes on top of Sets – instead, a Partition of
Sets is treated by theory as another distinct data
structure called a Union-Find Structure.

• Union-Find Structures are built around efficiently
determining which Set among a collection of Sets
contains a particular element (the Find), and
operations for efficiently building and combining
Sets (the Union).

Java, Partitions, and Union-Finds

• Java doesn’t support Partitioning directly, at least
not in the way that it supports Sets.

• You can recreate the practical effects of a
Partition with an array or list, plus using existing
Set methods.
– Make a new Set and add a single element, or use the

.addAll() function to add one set to another, or use

.contains() on each Set in a collection of Sets to find a
particular element.

• This doesn’t capture the efficiency or theoretical
simplicity of a Union-Find Structure, which means
we’ll have to implement our own..

Implementing Union-Find Structures

• Setting aside Sets and Partitions, the goal of a
Union-Find Structure is to organize n
elements across some number of groups
(which we’ll still call sets, just not Sets).

• The simples way is to have a collection of
sequences, like a list of lists.

• The top-level list stores a reference to each
list, representing a set.

Using Positions and Elements

• Each list-set will store Positions, a type of
node that contains a reference to the element
stored in that position.

• It also stores a reference to the list-set that
contains it, making our elements location-
aware. This makes finding what set a given
element belongs to or creating a new set a
constant-time operation, as the relevant
information is stored locally.

List-Based Union-Find Structure

Uniting Two List-Sets in a Union-Find

• When performing a Union on two sets,
remove all of the positions from the smaller
list and add them to the end of the larger one.

• Don’t forget to update each position’s set
reference to point to their new list-set.

• Since at worst this will take O(n/2), we can say
this Union operation is O(n).

Performance of the
List-Based Union-Find Structure

• Performance for a Union-Find structure is
essentially measured by how long it takes to build
all of the sets (one for each element), then use
Union and Find to assemble them into the
desired collection of disjoint sets, possibly up to
one big Set containing everything.

• This will take us O(n log n), since Making and
Finding for sets is constant while Unions are O(n),
and it’ll take O(log n) to go from n Sets of size 1 to
1 Set of size n (remember what we learned about
Tree height!)

Tree-Based Union-Find Structure

• An alternative approach to implementing a
Union-Find Structure would be using Trees,
where each Tree is a separate set.

• Aside from changing the Position nodes to be
Tree nodes storing references to multiple
children, we also no longer have a Set reference
pointing to a parent list – instead, the parent
reference of each Tree node is also a Set
reference, and the root of each separate Tree-
Set points back to itself.

Tree-Based Union-Find Structure

Performance Differences
With a Tree-Based Union-Find

• Now uniting two sets can be achieved by
making one Tree a subtree of the other, by
changing one Tree’s root’s parent reference
from itself to the root of the other Tree, a
constant-time operation.

• Find, on the other hand, requires walking up
from a given element’s Position to the root,
to find out what Set they’re in, which in the
worst case can take O(n).

Two Performance-Improving Heuristics

• Union-by-Size: Add a size variable to the root of each
subtree storing how many positions make up that Tree,
and choose the smaller subtree to be anchored to the
larger one during Union operations (don’t forget to
update the size variable for the now-even-larger
subtree!).

Two Performance-Improving Heuristics

• Path Compression: During a Find operation, on
the way to the root, reset the parent reference
for each node visited to point to the root of the
subtree.

Performance of the Augmented
Tree-Based Union-Find Structure

• Performing a series of n Union and Find
operations now takes O(n log* n) time, where
log * n is the log-star function, the inverse of the
tower-of-twos function.

• Log*n is “the number of times that one can
iteratively take the logarithm (base 2) of a
number before getting a number smaller than 2”.

• Essentially what this means is “Yes it’s O(n log n)
but it’s a faster O(n log n) than if you did it the
other way.

A Reminder of Why We’re Doing This

• Set-based data structures, including Partitions and
Union-Find Structures, are all about establishing an
element’s membership.

• There will be times while programming where what
you need is to collect data according to their group and
confirm that everything is stored in the right Set,
without being particular about how they’re stored
within that Set – Union-Find Structures may be the
right basis for that kind of work.

• As for doing other operations with a Set, like finding
the largest or smallest element, we’ll be tackling those
next in Selections.

Recap – Set the Record Straight

• Sets are a very general type of data structure that
collects distinct elements.

• Sets are very high up in the theory and Java
programming hierarchies, leading to Ordered Sets and
Mergable Sets.

• Mergable Sets can be implemented with the generic
Merge method, built over a Template Method design
pattern that can be specialized into three different
methods.

• Partitions are disjoint collections of Sets, while Union-
Find Structures are a distinct data structure based on
the Partition.

• We can implement our own Union-Find Structure
using either Lists or Trees.

