CMPT 225: Data Structures \& Programming

$$
\text { - Unit } 28 \text { - }
$$

Bucket Sort, Radix Sort, and
Sorting Overview
Dr. Jack Thomas
Simon Fraser University
Spring 2021

Today's Topics

- Bucket-Sort
- Radix-Sort
- Stable Sorting
- In-Place Sorting
- Comparison Between Sorts

Non-Comparison-Based Sorting

- Comparison-based sorting methods have a lower bound for efficiency of $\mathbf{O}(\mathbf{n} \log \mathrm{n})$ - it's just not possible to get it any lower.
- Most practical applications of sorting, however, have some limits to the expected inputs that we can take advantage of to improve our sorting efficiency to $\mathbf{O}(n)$
- The two we'll consider today are Bucket-Sort and Radix-Sort.

Restricting the Range of Inputs

- One set of inputs that comes up a lot is a bounded range of numbers, either on their own or as keys for entries.
- For example, the ranks of an ordered set of three entries could give us the sequence (1, 2, 3).
- More formally, this type of input is defined as:
- A sequence S of n entries whose keys are integers in the range $[0, \mathrm{~N}-1]$, for some integer $\mathrm{N}>=2$.

Bucket-Sort

- Bucket-Sort is not comparison-based, it uses the keys as indices into a bucket array with cells 0 to $\mathrm{N}-1$.
- An entry with key k matches with the bucket $B[k]$, with identical keys landing in the same bucket (this should remind you of Hash Tables).
- Once the bucket array is filled, emptying it in order from $\mathrm{B}[0]$ to $\mathrm{B}[\mathrm{N}-1]$ will give you the entries ordered by their keys.

Algorithm bucketSort(S):
Input: Sequence S of entries with integer keys in the range $[0, N-1]$
Output: Sequence S sorted in nondecreasing order of the keys Let B be an array of N sequences, each of which is initially empty For each entry e in S do
k <- e.getKey()
remove e from S and insert it at the end bucket (sequence) $B[k]$
For $\mathrm{l}<-0$ to $\mathrm{N}-1$ do
for each entry e in sequence $\mathrm{B}[\mathrm{i}]$ do
remove e from $\mathrm{B}[\mathrm{i}]$ and insert it at the end of S

Radix-Sort

- One issue with Bucket-Sort is that it can only sort according to one term - it can't handle some of the more sophisticated multi-part keys you can normally compare with a Comparator rule (for example, comparing dates made of a day, month, and year).
- Radix-Sort augments Bucket-Sort to handle these situations by layering the Bucket-Sorts in reverse-order of the key's parts.

Radix Example Part One

- Imagine a two-part key made of two different integers, which we would like to sort according to a lexicographical order.

$$
\text { S }(3,3)(1,5)(2,5)(1,2)(2,3)(1,7)(3,2)(2,2) \text {. }
$$

- This is essentially what alphabetical order is, so thinking of these as two-letter keys may help.

Radix Example Part 2

- Sorting our example set by our first key will leave some entries out of order.

$$
S_{1}(1,5)(1,2)(1,7)(2,5)(2,3)(2,2)(3,3)(3,2)
$$

- Sorting them again by the second key will fix that ordering, but break it for the first.

$$
S_{12}(1,2)(2,2)(3,2)(2,3)(3,3)(1,5)(2,5)(1,7)
$$

Radix Example, The Thrilling Conclusion

- On the other hand, if we sort them according to the second key first...

$$
s_{2}(1,2)(3,2)(2,2)(3,3)(2,3)(1,5)(2,5)(1,7) \text {. }
$$

- And then sort them by the first...

$$
s_{21}(1,2)(1,5)(1,7)(2,2)(2,3)(2,5)(3,2)(3,3) \text {. }
$$

- The reversed process of Radix-Sort ensures that entries with equal keys are already ordered by their second (or third, or fourth...) key components.

Sorting Stability

- Bucket and Radix-Sort raise the issue of Stable Sorting, which is the question of how to handle entries with equal keys.
- Stable sorting methods are ones where entries with equal keys retain their relative positions to one another in the sorted sequence.

Unstable Sorting

- Quick-Sort is an example of an unstable sorting method - the set of values equal to the pivot value is not built in a way that preserves their relative ordering.
$(2,5,4,3,4,3,2,6,4)->(2,3,3,2)(4,4,4)(5,6)$

Consequences of Sorting Stability

- The stability of different sorting algorithms can influence their efficiency (why spend time shuffling around equal entries?).
- It can also create unintended side-effects - recall that Java used to use Merge-Sort to sort arrays of objects, but Quick-Sort for arrays of primitive data types.
- This was because two integers are completely identical, so an unstable sort has no effect, but two objects with the same key are not identical and an unstable sort might randomly swap their positions each time it runs.

Sorting "In Place"

- Another consideration for sorting methods aside from run-time efficiency is how much memory space they take up while they're running.
- Ideally, sorting can be done In-Place, meaning that there's no need for creating new, temporary copies of the data being sorted during the running of the algorithm.
- If a sort can't be done in-place, how much extra memory space it requires becomes another metric of performance to worry about.

Examples for Sorting In-Place

- Insertion-Sort can be done in-place, simply by moving the entries around within the sequence being sorted. This is how the version we introduced in section 4 works.

$$
\begin{array}{llllllll}
6 & 5 & 3 & 1 & 8 & 7 & 2 & 4
\end{array}
$$

Image credit: https://upload.wikimedia.org/wikipedia/commons/0/Of/Insertion-sort-example-300px.gif

When a Sort Can't be In-Place

- Merge-Sort is a good example of a sorting algorithm that can't be done in-place, specifically thanks to the merge step where the two sorted sets are emptied into the new, combined set.
- This requires the creation of new subsets during the division step, meaning each layer of MergeSort's decision tree creates a whole new copy of the input data, divided across twice as many sets as the previous layer - that's expensive!

Oh Hey Remember Heap-Sort

- While we're wrapping up, I should remind you of Heap-Sort, introduced alongside Heaps.
- Take a set of input data and build a Heap (a Complete Binary Tree), then keep removing the root to build a new in-order sequence.
- Like the other comparison-based sorts, HeapSort can run in $\mathbf{O}(\mathbf{n} \log \mathbf{n})$. It can also be done in-place, but is unstable.

Summary of Sorting Algorithms

- Let's do a quick run-down of our options:

1. Insertion-Sort ($O\left(\mathrm{n}^{2}\right.$), stable, in-place)
2. Merge-Sort $(O(n \log n)$, stable, not in-place)
3. Quick-Sort $\left(O(n \log n)^{*}\right.$, unstable, in-place)
4. Heap-Sort $(O(n \log n)$, unstable, in-place)
5. Bucket-Sort/Radix-Sort($\mathrm{O}(\mathrm{n}+\mathrm{N}) / \mathrm{O}(\mathrm{d}(\mathrm{n}+\mathrm{N}))$, stable, not in-place).

When to Use the Different Sorts

- Insertion-Sort's actual run-time is $\mathrm{O}(\mathrm{n}+\mathrm{m})$, where m is the number of inversions (the number of pairs of elements out of order).
- Small sequences (i.e. fewer than 50) necessarily have fewer inversions, as do cases where the inputs are already nearly sorted.
- In those limited instances, Insertion-Sort can actually be a pretty efficient, easy-toprogram, stable, in-place option.

When to Use the Different Sorts

- Merge-Sort is the best comparison-based search if stability is required, but since it isn't in-place, the memory usage is often too high.
- Quick-Sort is, on-average, the fastest of the comparison-sorts, but because it can't truly guarantee $\mathbf{O}(\mathbf{n} \log \mathrm{n})$ it's not always appropriate.
- Heap-Sort is actually seen as the best choice of the comparison-sorts where consistent performance is needed, since it guarantees O (n $\log n$) and can be implemented in-place.

When to Use the Different Sorts

- Bucket/Radix-Sort is a good pick when sorting a limited range of integers, or d-tuple keys made up of integers.
- Keep an eye out for cases where $\mathbf{N}=\mathbf{n}$, like sorting entries according to their ranking, since those can be sorted in $\mathrm{O}(\mathrm{n})$ instead of the comparison-based algorithms' $O(n \log n)$.

Recap - Summing Up This Sort Of Thing

- Bucket-Sort and Radix-Sort make linear-time sorting possible for inputs with limited ranges.
- Stable sorting ensures entries with equal keys retain their relative positions in the sorted set.
- In-place sorting is when algorithms can sort within the structure being sorted, without needing to take up additional memory.
- Remember Heap-Sort? Sorting by making a Heap? Don't forget Heap-Sort!
- Each sorting method has benefits and drawbacks that influence when it should be used.

