
CMPT 225: Data Structures & Programming
– Unit 28 –

Bucket Sort, Radix Sort, and
Sorting Overview

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• Bucket-Sort

• Radix-Sort

• Stable Sorting

• In-Place Sorting

• Comparison Between Sorts

Non-Comparison-Based Sorting

• Comparison-based sorting methods have a
lower bound for efficiency of O(n log n) – it’s
just not possible to get it any lower.

• Most practical applications of sorting,
however, have some limits to the expected
inputs that we can take advantage of to
improve our sorting efficiency to O(n)

• The two we’ll consider today are Bucket-Sort
and Radix-Sort.

Restricting the Range of Inputs

• One set of inputs that comes up a lot is a
bounded range of numbers, either on their
own or as keys for entries.

• For example, the ranks of an ordered set of
three entries could give us the sequence (1, 2,
3).

• More formally, this type of input is defined as:
– A sequence S of n entries whose keys are integers

in the range [0, N-1], for some integer N >= 2.

Bucket-Sort

• Bucket-Sort is not comparison-based, it uses
the keys as indices into a bucket array with
cells 0 to N-1.

• An entry with key k matches with the bucket
B[k], with identical keys landing in the same
bucket (this should remind you of Hash Tables).

• Once the bucket array is filled, emptying it in
order from B[0] to B[N-1] will give you the
entries ordered by their keys.

Algorithm bucketSort(S):
Input: Sequence S of entries with integer keys in the range [0, N-1]
Output: Sequence S sorted in nondecreasing order of the keys
Let B be an array of N sequences, each of which is initially empty
For each entry e in S do
 k <- e.getKey()
 remove e from S and insert it at the end bucket (sequence) B[k]
For I <- 0 to N – 1 do
 for each entry e in sequence B[i] do
 remove e from B[i] and insert it at the end of S

Radix-Sort

• One issue with Bucket-Sort is that it can only
sort according to one term – it can’t handle
some of the more sophisticated multi-part
keys you can normally compare with a
Comparator rule (for example, comparing
dates made of a day, month, and year).

• Radix-Sort augments Bucket-Sort to handle
these situations by layering the Bucket-Sorts
in reverse-order of the key’s parts.

Radix Example Part One

• Imagine a two-part key made of two different
integers, which we would like to sort
according to a lexicographical order.

• This is essentially what alphabetical order is,
so thinking of these as two-letter keys may
help.

S (3,3) (1,5) (2,5) (1,2) (2,3) (1,7) (3,2) (2,2)

Radix Example Part 2

• Sorting our example set by our first key will
leave some entries out of order.

• Sorting them again by the second key will fix
that ordering, but break it for the first.

S1 (1,5) (1,2) (1,7) (2,5) (2,3) (2,2) (3,3) (3,2)

S12 (1,2) (2,2) (3,2) (2,3) (3,3) (1,5) (2,5) (1,7)

Radix Example,
The Thrilling Conclusion

• On the other hand, if we sort them according
to the second key first…

• And then sort them by the first…

• The reversed process of Radix-Sort ensures
that entries with equal keys are already
ordered by their second (or third, or fourth…)
key components.

S2 (1,2) (3,2) (2,2) (3,3) (2,3) (1,5) (2,5) (1,7)

S21 (1,2) (1,5) (1,7) (2,2) (2,3) (2,5) (3,2) (3,3)

Sorting Stability

• Bucket and Radix-Sort raise the issue of Stable
Sorting, which is the question of how to
handle entries with equal keys.

• Stable sorting methods are ones where entries
with equal keys retain their relative positions
to one another in the sorted sequence.

Unstable Sorting

• Quick-Sort is an example of an unstable sorting
method – the set of values equal to the pivot
value is not built in a way that preserves their
relative ordering.

(2, 5, 4, 3, 4, 3, 2, 6, 4) -> (2, 3, 3, 2) (4, 4, 4) (5, 6)

Consequences of Sorting Stability

• The stability of different sorting algorithms can
influence their efficiency (why spend time
shuffling around equal entries?).

• It can also create unintended side-effects – recall
that Java used to use Merge-Sort to sort arrays of
objects, but Quick-Sort for arrays of primitive
data types.

• This was because two integers are completely
identical, so an unstable sort has no effect, but
two objects with the same key are not identical
and an unstable sort might randomly swap their
positions each time it runs.

Sorting “In Place”

• Another consideration for sorting methods aside
from run-time efficiency is how much memory
space they take up while they’re running.

• Ideally, sorting can be done In-Place, meaning
that there’s no need for creating new, temporary
copies of the data being sorted during the
running of the algorithm.

• If a sort can’t be done in-place, how much extra
memory space it requires becomes another
metric of performance to worry about.

Examples for Sorting In-Place

• Insertion-Sort can be done in-place, simply by
moving the entries around within the sequence
being sorted. This is how the version we
introduced in section 4 works.

Image credit: https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-
example-300px.gif

https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif

When a Sort Can’t be In-Place

• Merge-Sort is a good example of a sorting
algorithm that can’t be done in-place, specifically
thanks to the merge step where the two sorted
sets are emptied into the new, combined set.

• This requires the creation of new subsets during
the division step, meaning each layer of Merge-
Sort’s decision tree creates a whole new copy of
the input data, divided across twice as many sets
as the previous layer – that’s expensive!

Oh Hey Remember Heap-Sort

• While we’re wrapping up, I should remind you
of Heap-Sort, introduced alongside Heaps.

• Take a set of input data and build a Heap (a
Complete Binary Tree), then keep removing
the root to build a new in-order sequence.

• Like the other comparison-based sorts, Heap-
Sort can run in O(n log n). It can also be done
in-place, but is unstable.

Summary of Sorting Algorithms

• Let’s do a quick run-down of our options:

1. Insertion-Sort (O(n2), stable, in-place)

2. Merge-Sort (O(n log n), stable, not in-place)

3. Quick-Sort (O(n log n)*, unstable, in-place)

4. Heap-Sort (O(n log n), unstable, in-place)

5. Bucket-Sort/Radix-Sort(O(n+N)/O(d(n+N)),
stable, not in-place).

When to Use the Different Sorts

• Insertion-Sort’s actual run-time is O(n+m),
where m is the number of inversions (the
number of pairs of elements out of order).

• Small sequences (i.e. fewer than 50)
necessarily have fewer inversions, as do cases
where the inputs are already nearly sorted.

• In those limited instances, Insertion-Sort can
actually be a pretty efficient, easy-to-
program, stable, in-place option.

When to Use the Different Sorts

• Merge-Sort is the best comparison-based search
if stability is required, but since it isn’t in-place,
the memory usage is often too high.

• Quick-Sort is, on-average, the fastest of the
comparison-sorts, but because it can’t truly
guarantee O(n log n) it’s not always appropriate.

• Heap-Sort is actually seen as the best choice of
the comparison-sorts where consistent
performance is needed, since it guarantees O(n
log n) and can be implemented in-place.

When to Use the Different Sorts

• Bucket/Radix-Sort is a good pick when sorting
a limited range of integers, or d-tuple keys
made up of integers.

• Keep an eye out for cases where N = n, like
sorting entries according to their ranking,
since those can be sorted in O(n) instead of
the comparison-based algorithms’ O(n log n).

Recap – Summing Up This Sort Of Thing

• Bucket-Sort and Radix-Sort make linear-time
sorting possible for inputs with limited ranges.

• Stable sorting ensures entries with equal keys
retain their relative positions in the sorted set.

• In-place sorting is when algorithms can sort
within the structure being sorted, without
needing to take up additional memory.

• Remember Heap-Sort? Sorting by making a
Heap? Don’t forget Heap-Sort!

• Each sorting method has benefits and
drawbacks that influence when it should be used.

