
CMPT 225: Data Structures &
Programming – Unit 27 – Quick-Sort

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• Divide-and-Conquer (again)

• Quick-Sort

• Analyzing Quick-Sort

• Quick-Sort in Java

• Implementing Quick-Sort

Dividing up Divide-and-Conquer

• Merge-Sort isn’t the only comparison-based
sorting algorithm based on divide-and-
conquer, there’s also Quick-Sort.

• Whereas Merge-Sort divided the data first,
then did the work of sorting as it merged
them back together again, Quick-Sort will sort
the data through dividing it.

Quick-Sort as Divide-and-Conquer

• Divide: If S has at least two elements (nothing needs to be
done if S has zero or one element), select a specific
element x from S, which is called the pivot. As is common
practice, choose the pivot x to be the last element in S.
Remove all the elements from S and put them into three
sequences:
– L, storing the elements in S less than x.
– E, storing the elements in S equal to x.
– G, storing the elements in S greater than x.

• Recur: Recursively sort sequences L and G.
• Conquer: Put back the elements into S in order by first

inserting the elements of L, then those of E, and finally
those of G.

Quick-Sort in a Nutshell

• Quick-Sort is based around picking one value
from the set of data (called the pivot), then
splitting the rest of the set into three subsets
based on whether they’re larger, smaller, or equal
to the pivot.

• You repeat the process on the subsequences until
you’ve broken everything down to sets of zero,
one, or multiple equal values, laid out in order so
that re-combining them will give you a sorted
sequence.

Cool Let’s Get Another One Of Those
Fun Wikipedia Visualizations

• Eh, this one’s not as good.

Image credit:
https://upload.wikimedia.org/wikipedia/commons/6/6a/Sorting_quicksort_anim.gif

https://upload.wikimedia.org/wikipedia/commons/6/6a/Sorting_quicksort_anim.gif
https://upload.wikimedia.org/wikipedia/commons/6/6a/Sorting_quicksort_anim.gif

Divide…

…and Conquer

Analysis

• Each node of our Tree represents a recursive call
of Quick-Sort that needs to be resolved.

• It also produces a number of comparisons equal
to the number of entries.

• The more equally-divided each sequence is into
sub-sequences, the fewer calls we’ll need to
completely divide up the data, and the fewer
comparisons it’ll take to divide each sub-
sequence.

• Taken together, this means the efficiency of our
sorting depends on the compactness of the Tree.

Consider a Worst-Case

Quick-Sort’s Random Element

• Merge-Sort controlled the size of the tree by
guaranteeing each node had half the number of
elements as its parent, but Quick-Sort’s use of
pivots introduces some randomness to the size of
the subsequences.

• We want to choose a pivot value that will divide
the sequence neatly in half, but we don’t actually
want to search through the sequence to find that
value – searching the whole sequence would
essentially require sorting it, after all.

Partitions and Pivots

• The next best thing to a perfect pivot is a randomly-
chosen pivot, instead of the last element.

• Regardless of the actual values of the elements, we
can assert that half of them would divide the
sequence into sub-sequences of between n/4 and
3n/4 – that’s just a product of there being an
ordering at all.

• This is called Randomized Quick-Sort, and we’re
allowed to expect it to be an O(n log n) algorithm,
even though technically the true worst-case is O(n2).

Quick-Sort in Java

• Unsurprisingly at this point, Java doesn’t have a
built-in Quick-Sort method.

• However, for reasons we’ll discuss later, Quick-
Sort is a fairly popular sorting method, which
means it’s often the implementation for .sort()
methods in standard library classes.

• This is still subject to change, however – for
example, the .sort() for arrays of primitive data
types is now the Dual-Pivot-Quick-Sort, a variant
of Quick-Sort.

How About Implementation?
Are Arrays and Lists a Problem Again?

• Not really, no.

• This time around, we can express the algorithm
for Quick-Sort generally, without being specific to
a list or array.

• Note that in the following algorithm, I do use list-
based language (addLast(), for example), but you
can implement that pseudocode statement with
an array as well. There’s just no array-specific
adaptations as there was with Merge-Sort’s two
counters.

Algorithm QuickSort(S):
Input: A sequence S implemented as an array or linked list.
Output: The sequence S in sorted order.
If S. size() < = 1 then
 return
P <- S.last().element()
Let L, E, and G be empty list-based sequences
While !S.isEmpty() do
 if S.last().element() < p then
 L.addLast(S.remove(S.getLast())
 Else if S.last().element() = p then
 E.addLast(S.remove(S.getLast()))
 Else
 G.addLast(S.remove(S.getLast()))
QuickSort(L)
QuickSort(G)
While !L.isEmpty() do
 S.addLast(L.remove(L.getFirst()))
While !E.isEmpty() do
 S.addLast(E.remove(E.getFirst()))
While!G.isEmpty() do
 S.addLast(G.remove(G.getFirst()))
return

Recap: Let’s Sort This Quick

• Quick-Sort is another comparison-based Divide-
and-Conquer sorting algorithm.

• Where Merge-Sort did the sorting work while
merging data back together, Quick-Sort does it
while dividing it up.

• The efficiency of Quick-Sort depends on the
choice of pivot values, and we can generally
expect O(n log n) with a randomly-chosen pivot.

• Java doesn’t offer an explicit Quick-Sort, but
often uses it to implement .sort() methods.

• The implementation for Quick-Sort is general to
either arrays or lists.

