
CMPT 225: Data Structures & 
Programming – Unit 26 – Merge Sort 

Dr. Jack Thomas 

Simon Fraser University 

Spring 2021 



Today’s Topics 

• The Need for Sorting 

• Divide and Conquer 

• Merging in Arrays and Lists 

• Analysis 

• Merge-Sort in Java 



Welcome to Sorting Algorithms 

• A major topic in Computer Science, both in the 
theory and in programming practice. 

• These cover any process where a data set can be 
put into order, like ordering numbers from smallest 
to largest, or alphabetical order. 

• Many of our data structures take pains to keep 
their data sorted, have a sorting step, or depend 
on data already being sorted in order to be 
efficient. 

• Already introduced with Insertion Sort, way back in 
unit 4 on arrays. 



Remember This Guy? 

Image credit: https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-
example-300px.gif  

https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif


Why Do We Need More Than One? 

• Different sorting methods have different 
properties that make them better fits for 
different circumstances. 

• For example, some are only efficient when paired 
with certain data structures, or may perform 
more consistently even if they share a similar O(). 

• We’ll perform an initial analysis of each 
algorithm as they’re introduced, and then again 
once all our sorting options are available. 



Divide-and-Conquer Algorithms 

• A common algorithmic design pattern we can 
apply to sorting is Divide-and-Conquer. 

• We divide the problem to be solved into 
multiple smaller problems that are easier to 
solve before combining them back together 
again. 



The Three Steps of a  
Divide-and-Conquer Algorithm 

1. Divide: If the input size is smaller than a certain 
threshold (say, one or two elements), solve the 
problem directly using a straightforward method 
and return the solution. Otherwise, divide the 
input data into two or more disjoint subsets. 

2. Recur: Recursively solve the subproblems 
associated with the subsets. 

3. Conquer: Take the solutions to the subproblems 
and “merge” them into a solution to the original 
problem. 



Sorting Through Divide-and-Conquer 

• Sorting a long sequence of values can be 
imagined as answering many smaller questions 
comparing pairs of values to decide which 
belongs in front of which. 

• Merge-Sort will let us break our sequence 
down to a set of those smaller comparison 
problems, solve those, and then Merge our 
smaller sorted sequences back together again. 

 



Merge-Sort as Divide-and-Conquer 

1. Divide: If S has zero or one element, return S 
immediately; it is already sorted. Otherwise (S 
has at least two elements), remove all the 
elements from S and put them into two 
sequences, S1 and S2, each containing about 
half of the elements of S; that is, S1 contains the 
first n/2 elements of S, and S2 contains the 
remaining n/2 elements. 

2. Recur: Recursively sort sequences S1 and S2. 
3. Conquer: Put back the elements into S by 

merging the sorted sequences S1 and S2 into a 
sorted sequence. 



Let’s Get One Of Those Wikipedia 
Visualizations In Here 

Image credit: https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif  

https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif


Divide… 



…and Conquer 



Ahahaha It’s A Tree Again 

• Surprise! 

• Merge-Sort is performing Binary Recursion to 
implicitly create a Complete Binary Tree. 

• This is also a Decision Tree, because each node of 
the Tree is essentially a question about which 
value belongs before which. 

• All Comparison-Based Sorting Algorithms 
produce a Decision Tree, and Decision Trees have 
some common properties (like their height) 
which will come into play later. 



Merging in Arrays and Lists 

• The Merge step is the most involved to 
implement, since it depends more on our 
choice of underlying data structure. 

• As such, there are two slightly different 
algorithms for merging depending on 
whether we’re using an Array or a List, but 
they’re ultimately doing the same thing 
(combining two smaller sorted sequences into 
one larger sorted sequence). 



Merge-Sort Algorithm for Arrays 
Algorithm merge(S1,S2,S): 
Input: Sorted sequences S1 and S2 and an empty sequence S, all of which are 
implemented as arrays. 
Output: Sorted sequence S containing the elements from S1 and S2. 
i <- j <- 0 
While i < S1.size() and j < s2.size() do 
 if S1.get(i) <= S2.get(j) then 
  S.addLast(s1.get(i)) 
  i <- i+1 
 else 
  S.addLast(S2.get(j)) 
  j <- j+1 
While i < S1.size() do 
 S.addLast(S1.get(i)) 
 i <- i+1 
While j< S2.size() do 
 S.addLast(S2.get(j)) 
 j <- j+1 





Merge-Sort Algorithm for Lists 

Algorithm merge(S1,S2,S): 
Input: Sorted sequences S1 and S2 and an empty sequence S, 
implemented as linked lists. 
Output: Sorted sequence S containing the elements from S1 and S2. 
While S1 is not empty and S2 is not empty do 
 if S1.first().element() <= S2.first().element() then 
  S.addLast(S1.remove(S1.first())) 
 else 
   S.addLast(S2.remove(S2.first())) 
While S1 is not empty do 
 S.addLast(S1.remove(S1.first())). 
While S2 is not empty do 
  S.addLast(S2.remove(S2.first())) 





Analyzing Merge-Sort 

• Each layer of the Merge-Sort Decision Tree requires 
O(n) comparisons to resolve, since each layer has n 
data values in it and every value may need to be 
compared to find its place in the next round of 
sequences.  

• The height of the Tree is log n, since it’s a 
Complete Binary Tree.  

• With log n layers to resolve at O(n) per layer 
Merge-Sort is O(n log n). 

• (Small assumption: this assumes that comparing 
two values takes O(1), which may not be true of all 
data, like a complex key.) 
 



Merge-Sort in Java 

• Does Java offer built-in Merge-Sort? No. 

• Well, not directly. Not all the time. 

• The .sort() function found in java.util.Collections for 
Java 7 was a Merge Sort, but was replaced in Java 8. 

• Sorting in particular is a topic where Java doesn’t 
care to implement every possibility, and will even 
change the underlying algorithm for common 
functions based on the current trend or newly 
developed variants. 

• Don’t worry, though, I’m sure you can implement 
Merge-Sort on your own! 

 



Recap – Merging the Key Points  
Into One Slide 

• We introduced the topic of Sorting Algorithms 
and our motivation for exploring them. 

• Merge-Sort is the first (after Insertion-Sort) of 
our sorting methods, which uses Divide-and-
Conquer to produce a Decision Tree. 

• The Merge step does most of the actual work, 
and looks different depending on whether our 
data structure is array- or list-based. 

• Merge-Sort runs in O(n log n). 

• Java does not offer Merge-Sort by default, 
though it does offer sorting. 


