CMPT 225: Data Structures &
Programming — Unit 26 — Merge Sort

Dr. Jack Thomas
Simon Fraser University
Spring 2021

Today’s Topics

The Need for Sorting
Divide and Conquer
Merging in Arrays and Lists
Analysis

Merge-Sort in Java

Welcome to Sorting Algorithms

A major topic in Computer Science, both in the
theory and in programming practice.

These cover any process where a data set can be
put into order, like ordering numbers from smallest
to largest, or alphabetical order.

Many of our data structures take pains to keep
their data sorted, have a sorting step, or depend
on data already being sorted in order to be
efficient.

Already introduced with Insertion Sort, way back in
unit 4 on arrays.

Remember This Guy?

6 5 3 1 8 7 2 4

Image credit: https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-
example-300px.gif

https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif

Why Do We Need More Than One?

* Different sorting methods have different
properties that make them better fits for
different circumstances.

* For example, some are only efficient when paired
with certain data structures, or may perform
more consistently even if they share a similar O().

 We'll perform an initial analysis of each
algorithm as they’re introduced, and then again
once all our sorting options are available.

Divide-and-Conquer Algorithms

A common algorithmic design pattern we can
apply to sorting is Divide-and-Conquer.

 We divide the problem to be solved into
multiple smaller problems that are easier to
solve before combining them back together
again.

The Three Steps of a
Divide-and-Conquer Algorithm

1. Divide: If the input size is smaller than a certain
threshold (say, one or two elements), solve the
problem directly using a straightforward method
and return the solution. Otherwise, divide the
input data into two or more disjoint subsets.

2. Recur: Recursively solve the subproblems
associated with the subsets.

3. Conquer: Take the solutions to the subproblems
and “merge” them into a solution to the original
problem.

Sorting Through Divide-and-Conquer

e Sorting a long sequence of values can be
imagined as answering many smaller questions
comparing pairs of values to decide which
belongs in front of which.

 Merge-Sort will let us break our sequence
down to a set of those smaller comparison
problems, solve those, and then Merge our
smaller sorted sequences back together again.

Merge-Sort as Divide-and-Conquer

1. Divide: If S has zero or one element, return S
immediately; it is already sorted. Otherwise (S
has at least two elements), remove all the
elements from S and put them into two
sequences, S1 and S2, each containing about
half of the elements of S; that is, S1 contains the
first n/2 elements of S, and S2 contains the
remaining n/2 elements.

2. Recur: Recursively sort sequences S1 and S2.

3. Conquer: Put back the elements into S by
merging the sorted sequences S1 and S2 into a
sorted sequence.

Let’s Get One Of Those Wikipedia
Visualizations In Here

65 5 3 1 8 7 2 4

Image credit: https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif

https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif
https://en.wikipedia.org/wiki/File:Merge-sort-example-300px.gif

Divide...

{ 8524634517 319650]
)\

= =
{85246345J {1731 9650}

atappaas)

(][] (7] [
) (][5))3 [5

...ahd Conquer

Ahahaha It's A Tree Again

Surprise!

Merge-Sort is performing Binary Recursion to
implicitly create a Complete Binary Tree.

This is also a Decision Tree, because each node of
the Tree is essentially a question about which
value belongs before which.

All Comparison-Based Sorting Algorithms
produce a Decision Tree, and Decision Trees have
some common properties (like their height)
which will come into play later.

Merging in Arrays and Lists

* The Merge step is the most involved to
implement, since it depends more on our
choice of underlying data structure.

* Assuch, there are two slightly different
algorithms for merging depending on
whether we’re using an Array or a List, but
they’re ultimately doing the same thing
(combining two smaller sorted sequences into
one larger sorted sequence).

Merge-Sort Algorithm for Arrays

Algorithm merge(S1,S2,S):
Input: Sorted sequences S1 and S2 and an empty sequence S, all of which are
implemented as arrays.
Output: Sorted sequence S containing the elements from S1 and S2.
i<-j<-0
While i < S1.size() and j < s2.size() do
if S1.get(i) <= S2.get(j) then
S.addLast(s1.get(i))
i <-i+1
else
S.addLast(S2.get(j))
j<-j+1
While i < S1.size() do
S.addLast(S1.get(i))
i <-i+1
While j< S2.size() do
S.addLast(S2.get(j))
j<-j+1

2 3 4 5 6 10 11 12 13
S1 8 | 11|12 |14 |15
1
S2 10 | 18 | 19 | 22 | 25
]
S 5 8 9
23 4 5 6 10 11 12 13
S1 8 | 11|12 |14 |15
i
S2 10 | 18 | 19 | 22 | 25
]
S 51 8|9 10

Merge-Sort Algorithm for Lists

Algorithm merge(S1,S2,S):
Input: Sorted sequences S1 and S2 and an empty sequence S,
implemented as linked lists.
Output: Sorted sequence S containing the elements from S1 and S2.
While S1 is not empty and S2 is not empty do
if S1.first().element() <= S2.first().element() then
S.addLast(S1.remove(S1.first()))
else
S.addLast(S2.remove(S2.first()))
While S1 is not empty do
S.addLast(S1.remove(S1.first())).
While S2 is not empty do
S.addLast(S2.remove(S2.first()))

mwo OOC
Wsw;mmm

Analyzing Merge-Sort

Each layer of the Merge-Sort Decision Tree requires
O(n) comparisons to resolve, since each layer has n
data values in it and every value may need to be
compared to find its place in the next round of
sequences.

The height of the Tree is log n, since it’s a
Complete Binary Tree.

With log n layers to resolve at O(n) per layer
Merge-Sort is O(n log n).

(Small assumption: this assumes that comparing
two values takes O(1), which may not be true of all
data, like a complex key.)

Merge-Sort in Java

Does Java offer built-in Merge-Sort? No.
Well, not directly. Not all the time.

The .sort() function found in java.util.Collections for
Java 7 was a Merge Sort, but was replaced in Java 8.

Sorting in particular is a topic where Java doesn’t
care to implement every possibility, and will even
change the underlying algorithm for common
functions based on the current trend or newly
developed variants.

Don’t worry, though, I’'m sure you can implement
Merge-Sort on your own!

Recap — Merging the Key Points
Into One Slide

We introduced the topic of Sorting Algorithms
and our motivation for exploring them.

Merge-Sort is the first (after Insertion-Sort) of
our sorting methods, which uses Divide-and-
Conquer to produce a Decision Tree.

The Merge step does most of the actual work,
and looks different depending on whether our
data structure is array- or list-based.

Merge-Sort runs in O(n log n).

Java does not offer Merge-Sort by default,
though it does offer sorting.

