
CMPT 225: Data Structures & Programming
– Unit 25.5 –

Interlude on Advanced Trees

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• Tree Recap

• TreeMap and TreeSet

• Red-Black Trees

• The Last Word on Trees

Tree Recap – Treecap?

• This section of the course has introduced or
expanded upon a variety of more advanced
Trees:
– Binary Search Trees

– AVL Trees

– Multi-Way Trees

– (2, 4) Trees

• These key-based Tree structures are good
candidates for building efficient versions of other
data structures, like Ordered Maps.

Then Where Are
The Classes and Interfaces?

• Despite their usefulness, these Trees have very
little support in the standard Java library, which
would be nice given how complicated they are to
implement.

• This is because, once again, Java is not beholden
to implement every theoretical data structure
just because they exist – if two Trees have the
same performance, implementing both of them
because they achieve it differently is redundant.

What Java Offers:
TreeMap and TreeSet

• Instead of offering a Tree directly, Java uses a
self-balancing Search Tree to implement a
Map class and a Set class (more on Sets to
come), which benefit from the Tree to provide
O(log n) run-time methods.

• These cover most practical use-cases for one
of these Trees, any more niche application will
probably require the programmer to
customize their Tree implementation anyway.

Quick TreeMap Interlude
(Double Interlude?)

• TreeMap works just like a Map implemented
by a Tree, meaning that it has all the expected
methods of a Map but with the run-time
efficiency of a Tree.

TreeMap as an Ordered Map

• This is actually slower than the near-constant-
time performance of HashMap (the Hashtable
implementation of Map), but TreeMap stores
the entries in order.

Okay, Then Which Tree Are Those
Classes Based On?

• Red-Black Trees.
• They’re yet another type

of self-balancing Binary
Search Tree, which
achieves its balance
through designating every
node as either red or
black, and maintaining
rules about the
alternating colour of
parents and children and
the number of black
nodes on any one path
from the root.

Why Aren’t We Doing a Full Unit on
Red-Black Trees, Then?

• Fair question.

• Since Java already covers the major use-cases for Trees
with a Red-Black Tree, that kind of Tree is already
pretty well-represented in the Standard Library.

• I can be confident you’ll encounter and learn about
Red-Black Trees over the course of your programming
career, whether or not I introduce them to you now.

• Instead, spending our time introducing you to the
wider world of Trees provides more theoretical
background you wouldn’t normally need to seek out on
your own.

Still Seems Kinda Weak

• Yeah okay it kind of is.

• Actually we’ve just spent a whole lot of time
on Trees and we’ve still got other topics to
cover before the end of the course.

• There’s only so much time I can spend
showing you different ways to self-balance a
Search Tree to get O(log n) time before we hit
diminishing returns, so let’s just skip ahead.

Also We Were Already A Little Behind
And Then Your Dog Ate Chocolate Cake

And You Cancelled a Lecture

• Shhshshshhhshshh

• She’s fine

Recap – I Already Said Treecap

• There are a number of ways to implement self-
balancing Search Trees that bound a Tree’s height
to log n and search, insert, and delete to O(log n).

• Since they’re mostly just used to implement
other structures, and you really just need one of
them for that, they’re not heavily supported in
Java and other languages.

• Nevertheless, they’re useful to know about for
your Computer Science theory background, and
so you’ll recognize when they would apply.

