
CMPT 225: Data Structures &
Programming – Unit 25 – (2, 4) Trees

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• Multi-Way Search Trees

• Multi-Way In-Order Traversals and Searching

• (2, 4) Trees

• Overflows and Underflows

• Analysis

We’ve Had Non-Linear
and Non-Positional

• Now it’s time for Non-Binary.

• We’re not just talking about Trees that can
have more than two kids (we already had that
with general Trees).

• These are Trees with more than one entry per
node, and a number of children based on the
number of entries, all to create a new type of
search tree.

The Multi-Way Search Tree

• A Tree where each internal node may have
many children and many entries is called a
Multi-Way Tree.

• By enforcing an ordering on the keys stored in
those entries, we can create an alternative
data structure to the Binary Search Tree,
called the Multi-Way Search Tree.

Defining the Multi-Way Search Tree

• Let v be a node of an ordered tree. We say
that v is a d-node if v has d children. We
define a Multi-Way Search Tree to be an
ordered tree T obeys the following three
rules.

1. Minimum Child Requirement

• Each internal node of T has at least two
children. That is, each internal node is a d-
node such that d >= 2.

 • These children may be other
internal nodes, or blank
external nodes (the same sort
of blank externals we used
with the Binary Search Tree).

2. Key-Child Correlation

• Each internal d-node v of T with children
v1,…,vd stores an ordered set of d – 1 key-
value entries (k1, x1), …, (kd-1, xd-1), where k1 <=
… <= kd-1.

 • For example, here
we have a node
with two keys
stored in order (5
and 10) and three
internal children.

3. Interleaved Ordering

• Let us conventionally define k0 = -inf and kd =
+inf. For each entry (k, x) stored at a node in
the subtree of v rooted at vi, i =1,…,d, we
have ki-1 <= k <= ki.

 • The leftmost child’s
keys are smaller than
5, the middle child’s
keys are between 5
and 10, and the
rightmost child’s key
is greater than 10.

The Multi-Way In-Order Traversal

• A Multi-Way Search Tree can be traversed in order in
the same way that a Binary Search Tree can, just by
opening up the algorithm from “go left, this node, go
right, go back” to a loop through the children and
stored entries from left to right.

• Does covering
this thing in red
arrows help? I
hope it helps.

Multi-Way Searching

• Thanks to the way the keys are
ordered, searching for a given key is
quite simple.

• If the search key is greater than all
keys at the current node, take the
rightmost link.

• If it’s smaller, take the leftmost link.
• Otherwise, take the link between the

keys that’re smaller and larger than
the search key.

• If you find an external node, the key
isn’t in here.

(2, 4) Trees

• Sometimes called 2-3-4 Trees, these are Multi-
Way Search Trees with two additional
properties:

– The Node Size Property, where every internal
node has a maximum of 4 children.

– The Depth Property, where every external node
has the same depth.

• Internal nodes are either 2-nodes, 3-nodes, or
4-nodes, based on the number of children.

This Is A Lot Of Rules,
Why Are We Doing This Again?

• Where an AVL-BST gave us height-bounded,
O(log n) methods through complex functions like
restructuring, (2,4) Trees give us the same
efficiency through their complex structure.

• Requiring all external nodes to be the same depth
while also capping internal node children to
between 2 and 4 will indirectly cause the
completeness property, as even the least
compact valid Tree would simply be a Complete
Binary Tree, which we know has h = log n.

Building a (2, 4) Tree

• Like with a BST, insertions into a (2, 4) Tree
start with a Multi-Way Search to bring us to
the external node where the new key would
fit.

• Instead of adding the new entry to the
external node (violating the rule about
external node depths), we just add it to the
internal parent’s set of keys, then create a
new external node and link to interleave
between the parent’s expanded key set.

Dealing With Overflows

• If the parent already has four children, then
an insertion which bumps that up to five
causes an overflow.

• This leads to a split operation, where a node
is replaced with two nodes and the four keys
are divided between them and their parent.

• Keys 1 and 2 go to one new node, key 3 goes
to the parent (to sit between them), and key 4
goes to the next new node.

What If That Causes
The Parent to Overflow?

• Then the split operation repeats for the
parent as well.

• This can propagate all the way up to the root,
which is how the height of the tree increases –
by the root splitting in two and creating a new
root above the two halves of what was
previously the root.

Deletion

• Also begins with a search. If the key is found in a node
with only external children, removing it is easy – just
delete it from the set and delete one of the external
nodes.

• If the key is in a node with internal children, instead
swap in a key from one of the children based on the in-
order succession (i.e. the largest child).

• This process must repeat for the child node the key
was taken from and its children, until a child with
external nodes is reached, at which point you can do
the easy deletion and removing an external node from
the first case.

Handling Underflows

• If the node with external children from who a
key is deleted is now a 1-node (one external
child, no keys), this causes an underflow.

• Handling an underflow for a node will involve
its parent and adjacent siblings, and falls into
one of two cases depending on the size of
their siblings.

Case 1: Fuse With a Sibling

• If both siblings of the underflowing node are
2-nodes, we perform a fusion operation.

• We merge the node with an adjacent sibling
into a single new node, and then take in the
key from their parent that was previously
between the two of them.

• Note that taking that key could cause the
underflow to propagate to the parent, so it’s
time to repeat the underflow operation on
them!

Case 2: Transfer From a Sibling

• If either adjacent sibling of the underflow
node is a 3 or 4-node, then we can transfer
the key from the parent that’s between those
two nodes and give it to the underflowing
node.

• We then give the parent a key from the
sibling to maintain the ordering, causing no
underflow, which prevents it from
propagating.

Recap – 2 Tree 4 Me

• A Multi-Way Search Tree is an ordered Tree that
allows multiple entries and children per node,
according to a special correlation

• We can find keys through Multi-Way Search, and
a special version of In-Order Traversals.

• The (2, 4) Tree adds additional constraints to
ensure the Tree’s height is log n.

• This requires special rules for handling overflows
on insertions and underflows on removals.

