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Today’s Topics 

• Multi-Way Search Trees 

• Multi-Way In-Order Traversals and Searching 

• (2, 4) Trees 

• Overflows and Underflows 

• Analysis 

 



We’ve Had Non-Linear  
and Non-Positional 

• Now it’s time for Non-Binary. 

• We’re not just talking about Trees that can 
have more than two kids (we already had that 
with general Trees). 

• These are Trees with more than one entry per 
node, and a number of children based on the 
number of entries, all to create a new type of 
search tree. 

 



The Multi-Way Search Tree 

• A Tree where each internal node may have 
many children and many entries is called a 
Multi-Way Tree. 

• By enforcing an ordering on the keys stored in 
those entries, we can create an alternative 
data structure to the Binary Search Tree, 
called the Multi-Way Search Tree. 



Defining the Multi-Way Search Tree 

 

• Let v be a node of an ordered tree. We say 
that v is a d-node if v has d children. We 
define a Multi-Way Search Tree to be an 
ordered tree T obeys the following three 
rules. 



1. Minimum Child Requirement 

• Each internal node of T has at least two 
children. That is, each internal node is a d-
node such that d >= 2. 

 • These children may be other 
internal nodes, or blank 
external nodes (the same sort 
of blank externals we used 
with the Binary Search Tree). 

 



2. Key-Child Correlation 

• Each internal d-node v of T with children 
v1,…,vd stores an ordered set of d – 1 key-
value entries (k1, x1), …, (kd-1, xd-1), where k1 <= 
… <= kd-1. 

 • For example, here 
we have a node 
with two keys 
stored in order (5 
and 10) and three 
internal children. 

 



3. Interleaved Ordering 

• Let us conventionally define k0 = -inf and kd = 
+inf. For each entry (k, x) stored at a node in 
the subtree of v rooted at vi, i =1,…,d, we 
have ki-1 <= k <= ki. 

 • The leftmost child’s 
keys are smaller than 
5, the middle child’s 
keys are between 5 
and 10, and the 
rightmost child’s key 
is greater than 10. 

 





The Multi-Way In-Order Traversal 

• A Multi-Way Search Tree can be traversed in order in 
the same way that a Binary Search Tree can, just by 
opening up the algorithm from “go left, this node, go 
right, go back” to a loop through the children and 
stored entries from left to right. 

• Does covering 
this thing in red 
arrows help? I 
hope it helps. 



Multi-Way Searching 

• Thanks to the way the keys are 
ordered, searching for a given key is 
quite simple. 

• If the search key is greater than all 
keys at the current node, take the 
rightmost link. 

• If it’s smaller, take the leftmost link. 
• Otherwise, take the link between the 

keys that’re smaller and larger than 
the search key. 

• If you find an external node, the key 
isn’t in here. 



(2, 4) Trees 

• Sometimes called 2-3-4 Trees, these are Multi-
Way Search Trees with two additional 
properties: 

– The Node Size Property, where every internal 
node has a maximum of 4 children. 

– The Depth Property, where every external node 
has the same depth. 

• Internal nodes are either 2-nodes, 3-nodes, or 
4-nodes, based on the number of children. 





This Is A Lot Of Rules,  
Why Are We Doing This Again? 

• Where an AVL-BST gave us height-bounded, 
O(log n) methods through complex functions like 
restructuring, (2,4) Trees give us the same 
efficiency through their complex structure. 

• Requiring all external nodes to be the same depth 
while also capping internal node children to 
between 2 and 4 will indirectly cause the 
completeness property, as even the least 
compact valid Tree would simply be a Complete 
Binary Tree, which we know has h = log n.  



Building a (2, 4) Tree 

• Like with a BST, insertions into a (2, 4) Tree 
start with a Multi-Way Search to bring us to 
the external node where the new key would 
fit. 

• Instead of adding the new entry to the 
external node (violating the rule about 
external node depths), we just add it to the 
internal parent’s set of keys, then create a 
new external node and link to interleave 
between the parent’s expanded key set. 



Dealing With Overflows 

• If the parent already has four children, then 
an insertion which bumps that up to five 
causes an overflow. 

• This leads to a split operation, where a node 
is replaced with two nodes and the four keys 
are divided between them and their parent. 

• Keys 1 and 2 go to one new node, key 3 goes 
to the parent (to sit between them), and key 4 
goes to the next new node. 

 





What If That Causes  
The Parent to Overflow? 

• Then the split operation repeats for the 
parent as well. 

• This can propagate all the way up to the root, 
which is how the height of the tree increases – 
by the root splitting in two and creating a new 
root above the two halves of what was 
previously the root. 



Deletion 

• Also begins with a search. If the key is found in a node 
with only external children, removing it is easy – just 
delete it from the set and delete one of the external 
nodes. 

• If the key is in a node with internal children, instead 
swap in a key from one of the children based on the in-
order succession (i.e. the largest child). 

• This process must repeat for the child node the key 
was taken from and its children, until a child with 
external nodes is reached, at which point you can do 
the easy deletion and removing an external node from 
the first case. 



Handling Underflows 

• If the node with external children from who a 
key is deleted is now a 1-node (one external 
child, no keys), this causes an underflow. 

• Handling an underflow for a node will involve 
its parent and adjacent siblings, and falls into 
one of two cases depending on the size of 
their siblings. 

 



Case 1: Fuse With a Sibling 

• If both siblings of the underflowing node are 
2-nodes, we perform a fusion operation.  

• We merge the node with an adjacent sibling 
into a single new node, and then take in the 
key from their parent that was previously 
between the two of them. 

• Note that taking that key could cause the 
underflow to propagate to the parent, so it’s 
time to repeat the underflow operation on 
them! 





Case 2: Transfer From a Sibling 

• If either adjacent sibling of the underflow 
node is a 3 or 4-node, then we can transfer 
the key from the parent that’s between those 
two nodes and give it to the underflowing 
node. 

• We then give the parent a key from the 
sibling to maintain the ordering, causing no 
underflow, which prevents it from 
propagating. 





Recap – 2 Tree 4 Me 

• A Multi-Way Search Tree is an ordered Tree that 
allows multiple entries and children per node, 
according to a special correlation 

• We can find keys through Multi-Way Search, and 
a special version of In-Order Traversals. 

• The (2, 4) Tree adds additional constraints to 
ensure the Tree’s height is log n. 

• This requires special rules for handling overflows 
on insertions and underflows on removals. 


