
CMPT 225: Data Structures &
Programming – Unit 24 – AVL Trees

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• AVL Trees and the Height-Balancing Property

• Updating Operations

• Performance of AVL

• Java Implementation

What’s an AVL Tree?

• AVL stands for Adelson-Velsky and Landis, the
inventors, which is kind of impressive getting your
name in on a fundamental data structure.

• AVL Trees are a way to address the issue in BSTs
that while we can bound our search time to the
height of the tree, there’s nothing bounding the
height from the number of inputs.

• AVL Trees introduce the Height-Balancing
Property to rebalance the tree whenever the
height starts growing too fast.

The Height Balancing Property

• “For every internal node v of T, the heights of
the children of v differ by at most 1.”

Some More Properties

• This means that every subtree of an AVL tree
is also an AVL Tree.

• It also leads to the assertion that “the height
of an AVL tree storing n entries is O(log n).”

• So, a BST that’s also an AVL would have a
height bounded by log n, finally getting us
those efficient searches!

Making a BST an AVL

• An AVL has the same methods as a BST, but now
has to maintain balance the same way it
maintains ordering.

• Since balance is defined as the heights of the
children of each node differing by at most one,
it’ll now be necessary for each node (or the
position storing that node) to keep track of its
current height.

• That way, when the tree changes through a
removal or insertion, we can quickly update the
affected heights and check if the tree has become
unbalanced.

Going Out Of Balance

• A change at the bottom of the tree can affect
the balance all the way up to the root.

• Insertion and removal methods will need a
rebalance method to traverse from the
affected node up to the root, looking for
unbalanced nodes.

• When an unbalanced node is found, the
process to fix it is called tri-node
restructuring, and the algorithm for it is a bit
of a doozy.

Algorithm restructure(x):

Input: A node x of a binary search tree T that has both a parent y
and a grandparent z

Output: Tree T after a trinode restructuring (which corresponds to
a single or double rotation) involving nodes x, y, and z.

1. Let (a, b, c) be a left-to-right (inorder) listing of the nodes x, y,
and z, and let (T0,T1,T2,T3) be a left-to-right (inorder) listing of
the four subtrees of x, y, and z not rooted at x, y, or z.

2. Replace the subtree rooted at z with a new subtree rooted at
b.

3. Let a be the left child of b and let T0 and T1 be the left and
right subtrees of a, respectively.

4. Let c be the right child of b and let T2 and T3 be the left and
right subtrees of c, respectively.

Woof

• Yeah I know it’s a lot.

• Don’t worry, we’ll walk it through one step at
a time with insertion and removal examples.

• But first, let’s talk about how to visualize what
the restructure algorithm is trying to
accomplish.

• Essentially, trinode restructuring is about
taking three unbalanced nodes and rotating
them.

Finding Our Rotation:
Who are Z, Y, and X?

• In all rotations, z will be the first node we
encounter going up from w (the node we
added or removed) toward the root of T such
that z is unbalanced.

• Then y will be the child of z with higher height
(an ancestor of w).

• Finally, x will be the child of y with higher
height (no ties, or else this wouldn’t be
unbalanced).

Single or Double Rotation

• If b = y, then this is called a Single Rotation,
because we can imagine we’re “rotating” y
over z.

• Otherwise, if b = x, it’s a double rotation,
where we first rotate x over y and then over z.

Let’s See Some Examples

• We’ll start by taking our tree from earlier and
adding a node with a key of 54.

• This will lead to a double-rotation.

Let (a, b, c) be a left-to-right (inorder) listing of the
nodes x, y, and z, and let (T0,T1,T2,T3) be a left-to-
right (inorder) listing of the four subtrees of x, y, and
z not rooted at x, y, or z.

Now For Removal

• We’ll take our updated tree and remove the
node with a key of 28 from it.

• This will require a single rotation.

Let (a, b, c) be a left-to-right (inorder) listing
of the nodes x, y, and z, and let (T0,T1,T2,T3)
be a left-to-right (inorder) listing of the four
subtrees of x, y, and z not rooted at x, y, or z.

Is There A Java Version, Or…?

• Nah.

• “Oh come on, really?” I hear you saying,
especially since I said it can give us some pretty
efficient implementations for certain map
functions.

• There IS a balanced tree used to implement a
map built into Java, but we’re not there yet.

• Otherwise, you’ll have to implement all of this
manually as part of any BST you build if you want
to ensure it’s as efficient as possible.

Recap – A Balanced Perspective

• An AVL Tree is a self-balancing variety of Binary
Search Tree.

• AVL Trees are constrained such that the height of
each node’s children may only differ by one,
which keeps the height of the tree overall bound
to log n, and searches to O(log n).

• By adding a rebalancing step to restructure the
tree after every insertion or removal, we can
maintain this height bound.

• The process of trinode restructuring involves
matching the unbalanced node with the right
kind of rotation.

