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Today’s Topics 

• AVL Trees and the Height-Balancing Property 

• Updating Operations 

• Performance of AVL 

• Java Implementation 



What’s an AVL Tree? 

• AVL stands for Adelson-Velsky and Landis, the 
inventors, which is kind of impressive getting your 
name in on a fundamental data structure. 

• AVL Trees are a way to address the issue in BSTs 
that while we can bound our search time to the 
height of the tree, there’s nothing bounding the 
height from the number of inputs. 

• AVL Trees introduce the Height-Balancing 
Property to rebalance the tree whenever the 
height starts growing too fast. 



The Height Balancing Property 

• “For every internal node v of T, the heights of 
the children of v differ by at most 1.” 



Some More Properties 

• This means that every subtree of an AVL tree 
is also an AVL Tree. 

• It also leads to the assertion that “the height 
of an AVL tree storing n entries is O(log n).” 

• So, a BST that’s also an AVL would have a 
height bounded by log n, finally getting us 
those efficient searches! 



Making a BST an AVL 

• An AVL has the same methods as a BST, but now 
has to maintain balance the same way it 
maintains ordering. 

• Since balance is defined as the heights of the 
children of each node differing by at most one, 
it’ll now be necessary for each node (or the 
position storing that node) to keep track of its 
current height. 

• That way, when the tree changes through a 
removal or insertion, we can quickly update the 
affected heights and check if the tree has become 
unbalanced. 



Going Out Of Balance 

• A change at the bottom of the tree can affect 
the balance all the way up to the root. 

• Insertion and removal methods will need a 
rebalance method to traverse from the 
affected node up to the root, looking for 
unbalanced nodes. 

• When an unbalanced node is found, the 
process to fix it is called tri-node 
restructuring, and the algorithm for it is a bit 
of a doozy. 

 



Algorithm restructure(x): 

Input: A node x of a binary search tree T that has both a parent y 
and a grandparent z 

Output: Tree T after a trinode restructuring (which corresponds to 
a single or double rotation) involving nodes x, y, and z. 

1. Let (a, b, c) be a left-to-right (inorder) listing of the nodes x, y, 
and z, and let (T0,T1,T2,T3) be a left-to-right (inorder) listing of 
the four subtrees of x, y, and z not rooted at x, y, or z. 

2. Replace the subtree rooted at z with a new subtree rooted at 
b. 

3. Let a be the left child of b and let T0 and T1 be the left and 
right subtrees of a, respectively. 

4. Let c be the right child of b and let T2 and T3 be the left and 
right subtrees of c, respectively. 



Woof 

• Yeah I know it’s a lot. 

• Don’t worry, we’ll walk it through one step at 
a time with insertion and removal examples. 

• But first, let’s talk about how to visualize what 
the restructure algorithm is trying to 
accomplish. 

• Essentially, trinode restructuring is about 
taking three unbalanced nodes and rotating 
them. 



Finding Our Rotation:  
Who are Z, Y, and X? 

• In all rotations, z will be the first node we 
encounter going up from w (the node we 
added or removed) toward the root of T such 
that z is unbalanced. 

• Then y will be the child of z with higher height 
(an ancestor of w). 

• Finally, x will be the child of y with higher 
height (no ties, or else this wouldn’t be 
unbalanced). 



Single or Double Rotation 

• If b = y, then this is called a Single Rotation, 
because we can imagine we’re “rotating” y 
over z.  

 

• Otherwise, if b = x, it’s a double rotation, 
where we first rotate x over y and then over z.  







Let’s See Some Examples 

 

 

• We’ll start by taking our tree from earlier and 
adding a node with a key of 54. 

 

• This will lead to a double-rotation. 



Let (a, b, c) be a left-to-right (inorder) listing of the 
nodes x, y, and z, and let (T0,T1,T2,T3) be a left-to-
right (inorder) listing of the four subtrees of x, y, and 
z not rooted at x, y, or z. 





Now For Removal 

 

• We’ll take our updated tree and remove the 
node with a key of 28 from it.  

 

• This will require a single rotation. 



Let (a, b, c) be a left-to-right (inorder) listing 
of the nodes x, y, and z, and let (T0,T1,T2,T3) 
be a left-to-right (inorder) listing of the four 
subtrees of x, y, and z not rooted at x, y, or z. 





Is There A Java Version, Or…? 

• Nah. 

• “Oh come on, really?” I hear you saying, 
especially since I said it can give us some pretty 
efficient implementations for certain map 
functions. 

• There IS a balanced tree used to implement a 
map built into Java, but we’re not there yet. 

• Otherwise, you’ll have to implement all of this 
manually as part of any BST you build if you want 
to ensure it’s as efficient as possible. 

 



Recap – A Balanced Perspective 

• An AVL Tree is a self-balancing variety of Binary 
Search Tree. 

• AVL Trees are constrained such that the height of 
each node’s children may only differ by one, 
which keeps the height of the tree overall bound 
to log n, and searches to O(log n). 

• By adding a rebalancing step to restructure the 
tree after every insertion or removal, we can 
maintain this height bound. 

• The process of trinode restructuring involves 
matching the unbalanced node with the right 
kind of rotation. 


