
CMPT 225: Data Structures & Programming
– Unit 23 –

Binary Search Trees

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• Reviewing Binary Search Trees

• Tree Search

• Insertion and Removal in a BST

• Java Implementation for BST

Remember Trees?

• How
about
Binary
Trees?

• How
about
Binary
Search
Trees?

To Refresh Your Memory…

• A Binary Tree restricts
each node of a tree to at
most two children.

• A Binary Search Tree also
orders the children such
that, for every node in the
tree, the value of the
element in their “left”
child (and all of that child’s
descendants) is less than
that node’s element, while
the value of the element in
their “right” child (and all
of that child’s
descendants) is greater.

A Binary Search Made Into A Structure

• Like the Skip List, a Binary Search Tree (BST) is
a way to benefit from the insight behind
Binary Search algorithms in the building of
our structure.

• Makes them suitable for implementing
Ordered Maps and Dictionaries efficiently.

Extracting an Order

• An in-order traversal,
where we visit a
node’s left child, then
the node itself, then
the right child, will
allow us to visit every
node in our BST in
order from smallest
to largest key.

Tree Search
• We can search a BST for a given key and return

the matching value with an in-order traversal
algorithm.

• To simplify our algorithms going forward, we’re
going to leave external nodes blank rather than
use them to store entries.

Algorithm TreeSearch(k,v):
 if T.isExternal(v) then
 return v
 if k < key(v) then
 return TreeSearch(k, T.left(v))
 else if k > key(v) then
 return TreeSearch(k, T.right(v))
 return v

Analyzing BST Searching

• Each recursive call of our search algorithm for
a BST uses only primitive operations, so our
run-time will be dependent on the height of
the tree.

• Unfortunately, this is O(h), not O(log n),
because this isn’t a complete binary tree (yet),
so we can’t guarantee anything about the
height. Still, better than O(n)! Probably?

Insertion

• Our insertion needs to find the external node
the new node would belong to and turn it into
an internal node.

Algorithm TreeInsert(k,x,v):
Input: A search key k, an associated value x, and a node v of T
Output: A new node w in the subtree T(v) that stores the
entry (k,x)
 w<-TreeSearch(k,v)
 if T.isInternal(w) then
 return TreeInsert(k,x,T.left(w))
 T.insertAtExternal(w,(kx))
 return w

Removal

• Removing a node is more complicated,
depending on the removed node’s children.

• You can find the node to remove with a Tree
Search, but how to remove it differs for each
of three cases:
1. If the node has two external children.

2. If the node has one external and one internal
child.

3. If the node has two internal children.

Removing a Node With
Two External Children

• Easy – we can just null the external nodes and
convert the node being removed to an
external node, no loose ends.

• Converting a node from internal to external is
as simple as setting its element and children
to null, while retaining the connection to its
parent (and the parent’s connection to its now
external node child).

Removing a Node With
One Internal and One External Child

• A little more work – the external node can be
ignored, while the internal node takes the
place of the node that was removed.

• It makes no difference whether the one
internal child is a left child (smaller than their
parent) or right child (larger), since we know
either will be a valid child of the same type as
their parent was to their grandparent.

(Argh I forgot
to draw in this
node’s right
external node
child, just
imagine
another empty
box there. It
doesn’t make a
difference here
anyway.)

The RemoveExternal Helper Function

• A common helper-function for the case where
you’re removing a node with one internal and one
external child is RemoveExternal, which takes that
external child as a parameter.

• This function takes advantage of the external node’s
relative relationships to connect their grandparent
to their sibling, cutting out their parent (and
themselves).

• The reason we use the external node to perform
this operation is so that our overall Remove
function can call this function when it finds an
external node.

Removing a Node With
Two Internal Children

• The tricky one.

• While either child would be a valid child to the
removed node’s parent, how do their
descendants mesh together?

• We’ll run an in-order traversal to find the
leftmost descendant of the removed node’s right
child.

• The “leftmost descendant” is defined as the
internal node you find from the removed node’s
right child if you keep moving left.

Removing a Node With
Two Internal Children

• Why 76? Why not 78?
– 76 is the leftmost child of 65’s right subtree. To get to

78, we’d have first had to go right once to 80, and we
can’t move right.

• What if 76 had an internal left child of its own?
– We’re doing an inorder traversal, so we’d have moved

to 76’s left child first before “visiting” 76, so that’s the
one we’d be using instead.

• What if 82’d had no internal children, or just a
right child?
– Then 82’d be the leftmost child and we’d be using it.

Removing a Node With
Two Internal Children

• Next, we swap the element from the leftmost
child into the node we’re supposed to remove,
overwriting it.

• The “removed” node is now effectively gone,
and the value we swapped in its place will be
valid for both children and the parent.

• The last step, then, is actually removing the
leftmost child node whose value we swapped
out, by treating it as a node with one or zero
internal node children.

Where’s the ADT?
The Standard Java Class?

• Binary Search Trees are a constrained form of
Tree, but they’re not supported as distinct
Abstract Data Types or as standard classes.

• Partly, this is because Binary Search Trees are
more like a set of properties than they are a
whole and distinct class – in the same way
that a Complete Binary Tree is also a variant of
the basic tree.

• That means it’s up to you to implement one.

Java Implementation

• We don’t have all day to grind this one out,
but I’ll get you started with TreeSearch for a
Binary Search Tree of BSTNodes with int keys.

Recap – The External Slide

• Binary Search Trees are a form of Binary Tree
constrained by the left child’s key being smaller than
the parent and the right child’s key being larger.

• The add and remove functions are built around Tree
Search, which efficiently navigates the structure since
it’s already laid out for in-order traversals.

• By building a binary search into its structure, it may
provide us more efficient searching opportunities by
bounding searches to the height of the Tree, but so far
there’s nothing stopping h = n.

• There is neither an ADT nor standard Java support for
BSTs, requiring manual implementation.

