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Today’s Topics 

• Reviewing Binary Search Trees 

• Tree Search 

• Insertion and Removal in a BST 

• Java Implementation for BST 

 



Remember Trees? 

• How 
about 
Binary 
Trees? 

• How 
about 
Binary 
Search 
Trees? 



To Refresh Your Memory… 

• A Binary Tree restricts 
each node of a tree to at 
most two children. 

• A Binary Search Tree also 
orders the children such 
that, for every node in the 
tree, the value of the 
element in their “left” 
child (and all of that child’s 
descendants) is less than 
that node’s element, while 
the value of the element in 
their “right” child (and all 
of that child’s 
descendants) is greater. 
 



A Binary Search Made Into A Structure 

• Like the Skip List, a Binary Search Tree (BST) is 
a way to benefit from the insight behind 
Binary Search algorithms in the building of 
our structure. 

• Makes them suitable for implementing 
Ordered Maps and Dictionaries efficiently. 



Extracting an Order 

• An in-order traversal, 
where we visit a 
node’s left child, then 
the node itself, then 
the right child, will 
allow us to visit every 
node in our BST in 
order from smallest 
to largest key. 



Tree Search 
• We can search a BST for a given key and return 

the matching value with an in-order traversal 
algorithm. 

• To simplify our algorithms going forward, we’re 
going to leave external nodes blank rather than 
use them to store entries. 

Algorithm TreeSearch(k,v): 
 if T.isExternal(v) then 
  return v 
 if k < key(v) then 
  return TreeSearch(k, T.left(v)) 
 else if k > key(v) then 
  return TreeSearch(k, T.right(v)) 
 return v 



Analyzing BST Searching 

• Each recursive call of our search algorithm for 
a BST uses only primitive operations, so our 
run-time will be dependent on the height of 
the tree. 

• Unfortunately, this is O(h), not O(log n), 
because this isn’t a complete binary tree (yet), 
so we can’t guarantee anything about the 
height. Still, better than O(n)! Probably? 



Insertion 

• Our insertion needs to find the external node 
the new node would belong to and turn it into 
an internal node. 

Algorithm TreeInsert(k,x,v): 
Input: A search key k, an associated value x, and a node v of T 
Output: A new node w in the subtree T(v) that stores the 
entry (k,x) 
 w<-TreeSearch(k,v) 
 if T.isInternal(w) then 
  return TreeInsert(k,x,T.left(w)) 
 T.insertAtExternal(w,(kx)) 
 return w 



Removal 

• Removing a node is more complicated, 
depending on the removed node’s children. 

• You can find the node to remove with a Tree 
Search, but how to remove it differs for each 
of three cases: 
1. If the node has two external children. 

2. If the node has one external and one internal 
child. 

3. If the node has two internal children. 





Removing a Node With  
Two External Children 

• Easy – we can just null the external nodes and 
convert the node being removed to an 
external node, no loose ends. 

• Converting a node from internal to external is 
as simple as setting its element and children 
to null, while retaining the connection to its 
parent (and the parent’s connection to its now 
external node child). 







Removing a Node With  
One Internal and One External Child 

• A little more work – the external node can be 
ignored, while the internal node takes the 
place of the node that was removed. 

• It makes no difference whether the one 
internal child is a left child (smaller than their 
parent) or right child (larger), since we know 
either will be a valid child of the same type as 
their parent was to their grandparent. 



(Argh I forgot 
to draw in this 
node’s right 
external node 
child, just 
imagine 
another empty 
box there. It 
doesn’t make a 
difference here 
anyway.) 





The RemoveExternal Helper Function 

• A common helper-function for the case where 
you’re removing a node with one internal and one 
external child is RemoveExternal, which takes that 
external child as a parameter. 

• This function takes advantage of the external node’s 
relative relationships to connect their grandparent 
to their sibling, cutting out their parent (and 
themselves). 

• The reason we use the external node to perform 
this operation is so that our overall Remove 
function can call this function when it finds an 
external node. 



Removing a Node With  
Two Internal Children 

• The tricky one. 

• While either child would be a valid child to the 
removed node’s parent, how do their 
descendants mesh together? 

• We’ll run an in-order traversal to find the 
leftmost descendant of the removed node’s right 
child. 

• The “leftmost descendant” is defined as the 
internal node you find from the removed node’s 
right child if you keep moving left. 







Removing a Node With  
Two Internal Children 

• Why 76? Why not 78? 
– 76 is the leftmost child of 65’s right subtree. To get to 

78, we’d have first had to go right once to 80, and we 
can’t move right. 

• What if 76 had an internal left child of its own?  
– We’re doing an inorder traversal, so we’d have moved 

to 76’s left child first before “visiting” 76, so that’s the 
one we’d be using instead. 

• What if 82’d had no internal children, or just a 
right child? 
– Then 82’d be the leftmost child and we’d be using it. 



Removing a Node With  
Two Internal Children 

• Next, we swap the element from the leftmost 
child into the node we’re supposed to remove, 
overwriting it. 

• The “removed” node is now effectively gone, 
and the value we swapped in its place will be 
valid for both children and the parent. 

• The last step, then, is actually removing the 
leftmost child node whose value we swapped 
out, by treating it as a node with one or zero 
internal node children. 







Where’s the ADT?  
The Standard Java Class? 

• Binary Search Trees are a constrained form of 
Tree, but they’re not supported as distinct 
Abstract Data Types or as standard classes. 

• Partly, this is because Binary Search Trees are 
more like a set of properties than they are a 
whole and distinct class – in the same way 
that a Complete Binary Tree is also a variant of 
the basic tree. 

• That means it’s up to you to implement one. 



Java Implementation 

• We don’t have all day to grind this one out, 
but I’ll get you started with TreeSearch for a 
Binary Search Tree of BSTNodes with int keys. 



Recap – The External Slide 

• Binary Search Trees are a form of Binary Tree 
constrained by the left child’s key being smaller than 
the parent and the right child’s key being larger. 

• The add and remove functions are built around Tree 
Search, which efficiently navigates the structure since 
it’s already laid out for in-order traversals. 

• By building a binary search into its structure, it may 
provide us more efficient searching opportunities by 
bounding searches to the height of the Tree, but so far 
there’s nothing stopping h = n. 

• There is neither an ADT nor standard Java support for 
BSTs, requiring manual implementation. 


