CMPT 225: Data Structures &
Programming — Unit 21 — Skip Lists

Dr. Jack Thomas
Simon Fraser University
Spring 2021

Today’s Topics

Binary Search and Data Structures

T
S
S

he Skip List
<ip List ADT

<ip Lists in Java

Implementing Ordered Maps

* Ordered Maps, recall, let us retrieve a subset
of entries from a Map whose keys fall
between some criteria.

* An Ordered Search Table based on an Arraylist
was one example implementation, but its
efficiency left something to be desired (put
and remove were both O(n)).

e Can we do better?

Introducing the Skip List

* A weird data structure we can build our
Ordered Map on top of to improve our
insertion and removal times to O(log n) on
average.

* Why do | say weird? How is something’s
worst-case run-time “on average”?

e Let’s flip some coins.
Image credit: http://clipart-library.com/clipart/339002.htm

http://clipart-library.com/clipart/339002.htm
http://clipart-library.com/clipart/339002.htm
http://clipart-library.com/clipart/339002.htm
http://clipart-library.com/clipart/339002.htm

Behold, A Skip List

S5 | -Inf nf
S4 | -Inf 17 +Inf
S3 | -Inf 17 25 55 H +Inf
S2 | -Inf 17 25 31 55 H +Inf
S| el 12 [17 25131 H 38— 44— 55 +Inf
SO | -Inf || 12 17 20 25 31 38 | 39 ‘ 44 | 50 ‘ 55 | | +Inf
* We started with ten entries, arranged smallest

to largest by integer keys, and this is what we

ended up with. How?

Defining a Skip List

* A Skip List S for a Map M consists of a series of
lists {S,, S4, --- S}, with h as the height of the
Skip List.

* Each List stores a subset of the entries of M
sorted by increasing keys, plus header and
trailer entries with two special keys (plus and

minus infinity) to guarantee they bracket all
other entries.

Defining a Skip List

List S, contains every entry of the map M (plus
the header and trailer).

Fori=1,..,h-1, list S, contains a randomly
generated subset of the entries in list S_; (plus
the header and trailer).

We randomly generate this subset for S, by
flipping a coin for each entry in S, ;, and
adding it on a heads.

List S, contains only the header and trailer.

Probable Properties

If SO has n entries, we expect S1 to have
around n/2 entries, S2 around n/4, and so on.

Any level Si of the Skip List probably has n/2i
entries.

The height h of the Skip List will probably be
about log n.

All of this is “probably” because the coin flip is
truly random, to avoid patterns.

Towers and Levels

We think of each separate list in S as being a
horizontal level.

Meanwhile, the entries that reappear in each list
are thought of as arranged vertically into a tower.

We implement this through two different sets of
doubly-linked lists, one for levels (the S lists) and
one for each tower.

This also means we can move vertically or
horizontally through the Skip List in O(1).

Skip List: The ADT

* A data structure that implements and extends the
Ordered Map ADT.

* |Improves the average time of search and update
operations to O(log n) through random arrangements.

e Standard methods include those of the Ordered Map
ADT, along with:
— Next: The position following a given position on a level.
— Prev: The position preceding a given position on a level.
— Below: The position below a given position in a tower.
— Above: The position above a given position in a tower.

Skip Lists in Java

* A Skip List can be found in Java as part of the
ConcurrentSkipListMap class.

ConcurrentSkipListMap<Integer, String> exampleSkipList = new ConcurrentSkipListMap<Integer, String>();
exampleSkipList.put(3, "First");
exampleSkipList.put(2, "Second");
exampleSkipList.put(4, "Third");
System.ovut.println(exampleSkipList.remove(key: 3));

System.out.println(exampleSkipList.remove(key: 2)); First
System.out.println(exampleSkipList.remove(key 4)); Second
System.ovut.println(); Third

* Nothing you haven’t seen before, what'’s really
changed is under the hood at the
implementation level.

Okay Cool Why Did We Do All That Though

* |n a way, our Skip List is similar to a structural
version of the Binary Search algorithm.

* |t allows us to SkipSearch for a given key,
navigate the positions in our grid of doubly
linked lists, and turn up a matching entry.

Skip Search

 The Start Position of S is the top-left position, one of
our special header nodes. Starting with that node, and
treating p as the entry at our current position, we
perform the following:

1. If S.below(p) is null, the search terminates. We are at the
bottom and have located the largest entry in S with a key
less than or equal to the search key k. Otherwise, we drop
down to the next lower level in the current tower by
setting p to S.below(p).

2. Starting at position p, we move p forward until it is at the
right-most position on the present level such that key(p) <=
k. We call this the scan forward step. This can lead to us
moving all the way to the trailer node, or not moving at all.

Insertion

* When inserting a new entry, start with a skip
search to find the position in SO with the
largest key less than or equal to our new key.

 We then insert our new entry immediately
after that position.

 Then, we build the tower by backtracking up
each list and flipping a coin — heads, add a
new entry to the tower and keep going. Tails,
you’'re done building.

Algorithm Skiplnsert(k,v):
Input: Key k and value v
Output: Topmost position of the entry inserted in the skip list.
p <- SkipSearch(k)

g <- null
e <- (k,v)
i<--1
repeat
i<-i1+1
if i >= h then
h <- h+1
t <- next(s)

s <- insertAfterAbove(null,s,(-inf,null))
insertAfterAbove(s,t,(+inf, null))
while above(p) = null do
p <- prev(p)
p <-above(p)
g<-insertAfterAbove(p,q,e)
until coinFlip() = tails
n <- n+1
return g

Building Beyond h

* |f a new entry flips heads enough time to take
it beyond the current height, what should you
do?

* You can choose to either restrict h to some

maximum, perhaps the original height on
creation, or allow new layers to be built.

* While these make some difference in terms of
constant time operations added, they don’t
change the O() analysis.

Removal

e Perform a skip search. If the key of the entry
you find isn’t exactly the same as the key you
were looking for, return null.

* Otherwise, remove P, then back-track through
its tower and remove it on each subsequent
level as well.

Analysis

* The Skip List allows for insertions and removals to take
O(log n) thanks to Skip Search and the height being
roughly log n.

* Some Skip List methods involve multiple O(log n)
operations one after the other, like working down to SO
then back up while building or erasing a tower, but
these are not nested, so they avoid being squared.

 The only odd point is that, due to the coin-flip nature,
different Skip Lists will end up being a little bit more or
less efficient, and there’s little way of knowing how
well they turned out before they’re used.

Analysis

* One advantage of Skip Lists is that the coin-flip
mechanic detaches our notion of “average case”
from whatever the keys actually are — even if the
keys are clustered in a way that frustrates a Hash
Table, they have no impact on the Skip Lists we
generate.

* Any strict rule, like building Si out of every other
entry from Si-1, would be prone to patterns on
some data-sets and end up being less efficient on
average.

Recap — Skip To The End

Skip Lists are a data structure we can use to
implement an Ordered Map with improved
run-time efficiency, on average.

They accomplish this through randomly
constructing a special grid of entries.

Skip search allows us to navigate this grid in
O(logn), on average.

Java offers a Map based on a Skip List called
ConcurrentSkipListMap

