
CMPT 225: Data Structures &
Programming – Unit 21 – Skip Lists

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• Binary Search and Data Structures

• The Skip List

• Skip List ADT

• Skip Lists in Java

Implementing Ordered Maps

• Ordered Maps, recall, let us retrieve a subset
of entries from a Map whose keys fall
between some criteria.

• An Ordered Search Table based on an Arraylist
was one example implementation, but its
efficiency left something to be desired (put
and remove were both O(n)).

• Can we do better?

Introducing the Skip List

• A weird data structure we can build our
Ordered Map on top of to improve our
insertion and removal times to O(log n) on
average.

• Why do I say weird? How is something’s
worst-case run-time “on average”?

• Let’s flip some coins.

 Image credit: http://clipart-library.com/clipart/339002.htm

http://clipart-library.com/clipart/339002.htm
http://clipart-library.com/clipart/339002.htm
http://clipart-library.com/clipart/339002.htm
http://clipart-library.com/clipart/339002.htm

Behold, A Skip List

• We started with ten entries, arranged smallest
to largest by integer keys, and this is what we
ended up with. How?

Defining a Skip List

• A Skip List S for a Map M consists of a series of
lists {S0, S1, … Sh}, with h as the height of the
Skip List.

• Each List stores a subset of the entries of M
sorted by increasing keys, plus header and
trailer entries with two special keys (plus and
minus infinity) to guarantee they bracket all
other entries.

Defining a Skip List

• List S0 contains every entry of the map M (plus
the header and trailer).

• For i = 1,…,h-1, list Si contains a randomly
generated subset of the entries in list Si-1 (plus
the header and trailer).

• We randomly generate this subset for Si by
flipping a coin for each entry in Si-1, and
adding it on a heads.

• List Sh contains only the header and trailer.

Probable Properties

• If S0 has n entries, we expect S1 to have
around n/2 entries, S2 around n/4, and so on.

• Any level Si of the Skip List probably has n/2i
entries.

• The height h of the Skip List will probably be
about log n.

• All of this is “probably” because the coin flip is
truly random, to avoid patterns.

Towers and Levels

• We think of each separate list in S as being a
horizontal level.

• Meanwhile, the entries that reappear in each list
are thought of as arranged vertically into a tower.

• We implement this through two different sets of
doubly-linked lists, one for levels (the S lists) and
one for each tower.

• This also means we can move vertically or
horizontally through the Skip List in O(1).

Skip List: The ADT

• A data structure that implements and extends the
Ordered Map ADT.

• Improves the average time of search and update
operations to O(log n) through random arrangements.

• Standard methods include those of the Ordered Map
ADT, along with:
– Next: The position following a given position on a level.

– Prev: The position preceding a given position on a level.

– Below: The position below a given position in a tower.

– Above: The position above a given position in a tower.

Skip Lists in Java

• A Skip List can be found in Java as part of the
ConcurrentSkipListMap class.

• Nothing you haven’t seen before, what’s really
changed is under the hood at the
implementation level.

Okay Cool Why Did We Do All That Though

• In a way, our Skip List is similar to a structural
version of the Binary Search algorithm.

• It allows us to SkipSearch for a given key,
navigate the positions in our grid of doubly
linked lists, and turn up a matching entry.

Skip Search

• The Start Position of S is the top-left position, one of
our special header nodes. Starting with that node, and
treating p as the entry at our current position, we
perform the following:
1. If S.below(p) is null, the search terminates. We are at the

bottom and have located the largest entry in S with a key
less than or equal to the search key k. Otherwise, we drop
down to the next lower level in the current tower by
setting p to S.below(p).

2. Starting at position p, we move p forward until it is at the
right-most position on the present level such that key(p) <=
k. We call this the scan forward step. This can lead to us
moving all the way to the trailer node, or not moving at all.

Insertion

• When inserting a new entry, start with a skip
search to find the position in S0 with the
largest key less than or equal to our new key.

• We then insert our new entry immediately
after that position.

• Then, we build the tower by backtracking up
each list and flipping a coin – heads, add a
new entry to the tower and keep going. Tails,
you’re done building.

Algorithm SkipInsert(k,v):
 Input: Key k and value v
 Output: Topmost position of the entry inserted in the skip list.
 p <- SkipSearch(k)
 q <- null
 e <- (k,v)
 i <- -1
 repeat
 i <- i + 1
 if i >= h then
 h <- h+1
 t <- next(s)
 s <- insertAfterAbove(null,s,(-inf,null))
 insertAfterAbove(s,t,(+inf, null))
 while above(p) = null do
 p <- prev(p)
 p <-above(p)
 q<-insertAfterAbove(p,q,e)
 until coinFlip() = tails
 n <- n+1
 return q

Building Beyond h

• If a new entry flips heads enough time to take
it beyond the current height, what should you
do?

• You can choose to either restrict h to some
maximum, perhaps the original height on
creation, or allow new layers to be built.

• While these make some difference in terms of
constant time operations added, they don’t
change the O() analysis.

Removal

• Perform a skip search. If the key of the entry
you find isn’t exactly the same as the key you
were looking for, return null.

• Otherwise, remove P, then back-track through
its tower and remove it on each subsequent
level as well.

Analysis

• The Skip List allows for insertions and removals to take
O(log n) thanks to Skip Search and the height being
roughly log n.

• Some Skip List methods involve multiple O(log n)
operations one after the other, like working down to S0
then back up while building or erasing a tower, but
these are not nested, so they avoid being squared.

• The only odd point is that, due to the coin-flip nature,
different Skip Lists will end up being a little bit more or
less efficient, and there’s little way of knowing how
well they turned out before they’re used.

Analysis

• One advantage of Skip Lists is that the coin-flip
mechanic detaches our notion of “average case”
from whatever the keys actually are – even if the
keys are clustered in a way that frustrates a Hash
Table, they have no impact on the Skip Lists we
generate.

• Any strict rule, like building Si out of every other
entry from Si-1, would be prone to patterns on
some data-sets and end up being less efficient on
average.

Recap – Skip To The End

• Skip Lists are a data structure we can use to
implement an Ordered Map with improved
run-time efficiency, on average.

• They accomplish this through randomly
constructing a special grid of entries.

• Skip search allows us to navigate this grid in
O(logn), on average.

• Java offers a Map based on a Skip List called
ConcurrentSkipListMap

