
CMPT 225: Data Structures & Programming
– Unit 20 –

Midterm Review

Dr. Jack Thomas

Simon Fraser University

Spring 2021

The March 8th Midterm

• Monday, March 8th, 11:30am to 12:30pm.

• One attempt, one hour, MUST be completed
within this time.

• Completed on Canvas.

• If you can’t complete it at the given time,
NOTIFY ME ASAP!

Format

• Three types of questions:

– Very Short Answer Questions: Answers should be
a sentence or two.

– Short Answer Questions: A paragraph (or
equivalent).

– Code Questions: Questions that involve coding.
Highly recommend you open the IDE to a blank
project before you begin the midterm so you can
code there and then copy-paste your answer over.

Academic Integrity

• The midterm is open book, meaning you’re
free to consult your notes, course material, or
even the open internet.

• You may NOT cooperate with anyone to
complete your midterm, especially other
students.

• Any source you use outside of course material
must be cited – looking code up is fine, lifting
code directly will be treated as plagiarism.

Content

• The midterm will cover everything up to the
end of Heaps (unit 16), meaning no APQs,
Maps, Hash Tables, or Ordered Maps.

• We won’t be taking questions directly from
the assignments, labs, or textbooks, but they
may be similar.

• The exam will be cumulative, so don’t go
forgetting everything as soon as the test is
over!

How To Study For The Midterm

1. Attend this review (good job!)

2. Consult your notes.

3. Check the slides

4. Watch the recordings.

5. Go through your code and the sample
solutions.

Object-Oriented Programming

• A paradigm for organizing code into discrete
“objects”, each complete and self-contained.

• The Four Principles

– Abstraction

– Encapsulation

– Modularity

– Hierarchy

Object-Oriented Programming

• Inheritance, how objects are organized into a
hierarchy who inherit fields and methods
from predecessors

• Polymorphism allows multiple related objects
to fulfill the same purpose (e.g. Chihuahuas
and Daschunds are both dogs).

– Overriding a function inherited from a superclass
with a new version in the subclass.

– Overloading a function with another version that
has a different signature.

Arrays

• A primitive data structure whose size is fixed
at declaration, reserving a contiguous block of
memory.

• Built-in quite deeply to Java, and most other
programming languages too.

• Arrays can also be multi-dimensional – you
can have arrays of arrays.

Arrays

• Remember Insertion Sort? An algorithm for
sorting an array.

Image credit: https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-
example-300px.gif

https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif
https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertion-sort-example-300px.gif

Lists

• An alternative primitive data structure made of
nodes, each of which stores an element of data.

• Typically made of a list class that stores a head
node (and possibly a tail node) and tracks the
length of the list, along with functions for
inserting and removing from the list.

• Java provides a List interface, while LinkedList is a
good all-purpose list data structure we’ll reuse a
lot.

Lists

• Nodes in a singly-linked list store a link to a next
node, to create a linear sequence, while doubly-
linked lists store two links (next and previous).

• Sentinel Nodes are special blank nodes we can
include at the front (header) and back (trailer) of
doubly-linked lists to make some algorithms
easier to implement.

• Circular lists?

Recursion

• When a function calls itself, pausing the
current instance and starting a new one.

• Each call ends with the function either
recursively calling itself again (usually on a
different set of data) or reaching a base case
that returns something and allows the stack of
recursive calls to start resolving themselves.

Recursion

• Recursion Tracing is a way of visualizing a
recursive process.

• Linear Recursion only calls itself once per call,
Binary Recursion calls itself twice per call,
Multiple Recursion goes further.

Analysis

• Remember what it means for a program to not
only work, but to be good – it doesn’t just solve
the problem, it does it optimally.

• Our analysis tools are for figuring out how much
space our structures take up and how much time
it takes our algorithms to run on them.

• Time is usually the bigger factor, which either
leads to experimental studies or analyzing the
number of primitive operations in our
algorithms.

Analysis

• The Seven Important Functions
1. Constant (1)

2. Logarithmic (log n)

3. Linear (n)

4. N-Log-N (n log n, usually with a log base of 2)

5. Quadratic (n2)

6. Cubic / Polynomial (n3 or more)

7. Exponential (xn)

• They’re important because they describe
different rates of growth.

Analysis

• Asymptotic Analysis measures performance
by how the run-time of a function grows as
the number of inputs grows.

• Big-Oh Notation tries to match the tightest-
fitting function to the worst-case time
performance, like O(n) for a function with a
loop that runs once per input.

• There’s also Big-Omega (best-case) and Big-
Theta (the actual growth rate).

Stacks

• The first of our more advanced data
structures, new elements are “pushed” on to
the top of the stack, and then “popped” back
off of the top.

• Could be based on a list or an array, since it
defines how data is accessed, not stored.

• Java includes a standard Stack class built-in.

Stack: The ADT

• A Stack stores a set of objects.

• Follows FILO (first-in-last-out).

• Standard Stack operations include:
– Push: Add an element to the top of the Stack.

– Pop: Remove the top element.

– Top: Return what’s on top of the stack without
removing it.

– Size: How many things are on the Stack?

– Empty: Is the stack empty? Yes or no.

Queues

• Cousin of the Stack, except you add elements
to the back and take them from the front.

• Java doesn’t have a built-in Queue class, but
does have a Queue interface, and you can use
a LinkedList as a Queue pretty easily.

Queue: The ADT

• A Queue stores a set of objects.

• Follows (FIFO) (first-in-first-out).

• Standard Queue operations include:
– Enqueue: Add an element to the back of the queue.

– Dequeue: Remove and return the element at the front
of the queue.

– Front: Return what’s at the front of the queue without
removing it.

– Size: How many things are in the queue?

– isEmpty: Is the queue empty? Yes or no.

Deques

• Double-Ended Queues, essentially both a
Queue and a Stack.

• Java has a Deque interface, there’s also an
ArrayDeque class, and a doubly-linked list is a
good basis if you’re implementing one.

Deque: The ADT

• A Deque stores a set of objects.
• Follows neither FIFO nor FILO.
• Standard Deque operations include:

– addFirst: Inserts a new element at the head.
– addLast: Inserts a new element at the tail
– removeFirst: Removes and returns the element at the

head.
– removeLast: Removes and returns the element at the tail.
– getFirst: Returns (but doesn’t remove) the element at the

head.
– getLast: Returns (but doesn’t remove) the element at the

tail.
– Size: How many things are in the queue?
– isEmpty: Is the queue empty? Yes or no.

Adapter Design Pattern

• Design Patterns as best practices for solving
programming problems.

• The Adapter (or Wrapper) is a design for an
object that looks like one data structure but is
based on another, to allow two structures to
interface.

• In Java, you can extend the class you’re
emulating to make it official, while storing the
other class as a variable and using its functions to
fill out the functions of the class you’re
extending.

Array Lists

• The more advanced version of Array, as a full
data structure like Queue or Stack.

• Based on the Sequence, the more formal
name for linear data structures, and accessed
by an index.

• There’s a standard Java version, which also
handles resizing itself by doubling its capacity
whenever add() pushes it over.

The Array List ADT

• A linear sequence of data elements, organized along and
accessed by its index.

• Essentially the full data structure version of what arrays do.
• Standard methods include:

– Get: Returns the element at a given index.
– Set: Replaces the element at a given index with a given element,

returns the old element.
– Add: Adds a new element at the given index and increases the

size.
– Remove: Removes the element at a given index and decreases

the size.
– Size: Returns the number of elements stored in the Array List.
– isEmpty: Returns whether the Array List is empty.

General Trees

• The beginning of the non-linear data structures,
unlike the sequence-based ones.

• A Tree is made of vertices (our nodes) connected
to at least one other vertex by an edge (our links).
These terms are used while visualizing Trees.

• Trees may not have cycles or disconnected
vertices, all connections are one-to-one, which
means there’s only one path from any vertex to
any other vertex.

General Trees

• Tree Terminology:

– Vertex

– Adjacent neighbours

– Degree

– Leaves (external nodes)

– Internal Nodes

– Distance

Tree: The ADT

• A data structure storing a non-linear set of data
elements.

• These elements are organized into a hierarchy.
• Methods of a Tree include:

– Element: Returns the object stored in a given node.
– Root: Returns the root of a Tree.
– Parent: Returns the parent of a given node.
– Children: Returns a collection of the nodes that are

children of a given node.
– isInternal: Tests whether a node is internal.
– isExternal: Tests whether a node is external (a leaf).
– isRoot: Tests whether a node is the root.

General Trees

• Rooted Trees are a common type of Tree that
have a special Root node, with the rest of the
nodes descending “down” from it.

• Nodes now have a parent, which is the
neighbouring node that leads back toward the
root, and children, which is any other
neighbouring node.

• This creates a ton of other family relations
(grandchildren/grandparents/siblings/descendant
s/ancestors)

General Trees

• There is no general Tree class or interface in
Java, but some based on specific Tree variants.

• You can implement your own basic tree pretty
easily, however – very similar to building your
own list.

• How your add, remove, get, sort, and search
methods work (and their efficiency) varies
greatly based on the variant.

General Trees

• Most Tree methods rely on traversals, which is
how you navigate a Tree. Again, depends a lot
on variant (how many children, whether
there’s a root, etc).

• Pre-order traversals work down through a
node’s children to the leaves. Post-order
traversals work up through the node’s parents
to the root.

Binary Trees

• A constrained version of a rooted Tree, where
each node may have only two, one, or zero
children.

• Has a number of properties surrounding the
height of the tree, depth of any one node,
number of nodes total, and number of
internal and external nodes.

Binary Tree ADT

• A subtype of the Tree data structure which limits
nodes to a maximum of two ordered children.

• Includes all of the methods and properties of the
general Tree.

• Binary Trees include the following methods:

– Left: Returns the left child.

– Right: Returns the right child.

– hasLeft: Confirms whether there’s a left child.

– hasRight: Confirms whether there’s a right child.

Binary Trees

• Allows for In-Order traversals, which first
visits a node’s left child, then the node itself,
then the node’s right child.

• The generalized traversal is the Euler Tour
traversal, which tours around every node,
with the other three traversals being sub-
types of the Euler.

Priority Queues

• Key-based data structures use a key paired
with a value within an entry for retrieving and
storing data, instead of the entry’s position
within the structure.

• Priority Queues are like Queues that return
the entry with the highest priority (smallest
key) instead of the oldest entry.

The Priority Queue ADT

• A data structure for storing entries containing data
values and keys.

• Based on keys included with each entry rather than
their positions in the queue.

• Standard methods include:
– Insert: Adds a given key and value to the Priority Queue,

and returns their combined entry.
– removeMin: Removes and returns an entry of P with the

smallest key. (Sometimes called poll, from queue)
– Min: Returns but does not remove an entry of P with the

smallest key. (Sometimes called peek, from queue)
– The usual generic methods from Queue as well, like

isEmpty() and size().

Priority Queues

• Java has a standard PriorityQueue class,
which accepts a Comparator you can define
for which of two entries has the smaller key.

• Priority Queue’s performance depends on the
underlying structure.

Heaps

• A data structure that combines non-positional
and non-linear properties to always store the
entry with the smallest key at the root.

• Based on a Complete Binary Tree, where every
node may have zero, one, or two children and the
order of where the next node must be attached
follows a strict pattern.

• The location for the next node is called the last
node, which essentially requires each “row” of
the heap to be filled up from left to right before a
new row may be started.

Heaps

• The Heap-Ordering Property says that the key
stored at each node must be greater than or
equal to the key stored by that node’s parent.

• When a new entry is added, we do Up-Heap
Bubbling to see how high it must climb the
Tree to maintain Heap Ordering.

• When the root is removed, we do Down-Heap
Bubbling to make one of the root’s children
the new root and restore the order.

Heaps

• Heaps don’t have an ADT, they’re the name
for Complete Binary Trees who obey the Heap
Ordering property.

• The standard Java PriorityQueue class is
based on a Heap.

• In terms of efficiency, Heaps balance the time
for adding and removing from Priority Queues
to O(log n), compared to O(1)/O(n) for
unsorted lists and O(n)/O(1) for sorted lists.

Recap – Ooooh, We’re Halfway There!

• The Midterm is on Monday at 11:30am and must
be submitted by 12:30pm – you have one hour!

• It’s on Canvas, with a mix of theory and coding
questions, so open up your IDE.

• It covers everything up to the end of unit 16 on
heaps.

• It’s open book, but no cooperating with others
or lifting solutions directly from the internet. Cite
any sources used.

• I’ll be available on Discord and in the virtual
lecture room if you need me!

