
CMPT 225: Data Structures & Programming
– Unit 19 –

Ordered Maps

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• Reintroducing Order to Keys

• Retrieving Subsets

• Ordered Maps ADT

• Ordered Maps in Java

• Binary Search

Keys and Ordering

• At first, the move from position-based to key-
based data structures appeared to remove
ordering, as the relative position of each entry
in the structure is no longer meaningful.

• Priority Queues re-introduced the idea at
least partially, since the entry at the front of
the queue must be the highest-priority one
according to their key.

• However, neither Priority Queues, Maps, nor
Hash Tables so far have supported a full
ordering of their entries by their keys.

Retrieving Subsets

• Many position-based data structures let us
retrieve not just one entry, but a whole subset of
neighbours – ArrayList.subList(2, 5) for example.

• If those structures are sorted, like an array of
numbers from smallest to largest or an
alphabetical list of names, these subsets can also
be useful – all products under $100, or all
students whose names start with B.

• This may be something we’d like to do with a
Map as well!

It’s Airports Again

• I think I just don’t want to find a new picture.

• Still, imagine you’re looking to buy a ticket to fly
somewhere.

Image credit: https://www.internationalairportreview.com
/article/81738/smarter-way-cut-queue/

https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/

Retrieving All Flights That Fit Your Criteria

• If you want to buy a ticket for a particular
flight, it’s easy to imagine that as a key-based
system – a combination of the departure city,
arrival city, and time, could be a unique key.

• What if you don’t want a particular flight, but
rather every flight between two particular
cities on a particular day?

Can We Do This Already?

• A Priority Queue isn’t well-adapted for this,
and a Hash Table would already need to know
which individual flights fall within the criteria
to retrieve each of them one at a time.

• What we need is a way to order the flights
chronologically according to our departure-
arrival-time key and return the subset
between two given keys (midnight to
midnight)

Enter the Ordered Map

• The Ordered Map is a sub-type of Map that can
not only return an entry with a given key, but also
a set of entries whose keys fall between two
keys, given some way to order the keys.

• As such, the chosen key for an Ordered Map must
produce a total ordering. This may be the result
of a natural ordering (such as an integer key
going smallest to largest) or the result of a
comparator (a rule for how to compare two
objects, like the BirthdayEntry from our Priority
Queue lab).

Where Ordered Maps Fit

• Ordered Maps are a variety of Map (and
typically implements Map as an interface), but
they are not a full implementation the way a
Hash Table is.

• In fact, a Hash Table or an un-ordered list
would be an unsuitable way to implement an
Ordered Map.

• We’ll discuss some data structures that
implement and build on Ordered Maps later.

Ordered Map ADT

• A key-based data structure that can return entries
based on the relative ordering of its entries’ keys.

• Standard methods include the ones for any Map, as
well as:
– firstEntry: Returns the entry with the smallest key.
– lastEntry: Returns the entry with the largest key.
– ceilingEntry: Returns the entry with the smallest key

greater than or equal to a given key.
– higherEntry: As above, but only greater than.
– floorEntry: Returns the entry with the largest key less than

or equal to a given key.
– lowerEntry: As above, but only less than.

Ordered Maps in Java

• Unfortunately, Java doesn’t have a standard
Ordered Map class or interface.

• There are a few classes that fulfill similar
purposes, like the SortedMap interface or the
LinkedHashMap class, but these have slight
differences owing to the fact that they’re not
direct implementations of the Ordered Map
ADT.

Ordered Search Table

• Technically, much like Maps and Priority Queues,
Ordered Maps don’t lay out how the data within is
actually stored.

• If we have a total order of keys, however, then we
could use an ArrayList as the underlying data structure,
since it will enable fast searching for keys between
certain criteria.

• These are called Ordered Search Tables, and yes, we’ve
sort of come full circle.

Finding Our Keys

• An Ordered Search Table makes accessing any
one key fast, but now we need to find multiple
keys – in the worst case, all n keys, if the bounds
of our subset cover all our entries.

• Thankfully, once we find either our upper or
lower bound, we just need to package together
and return every neighbour on our way to the
other bound, which is way more efficient than
tracking down each key across an unsorted set.

• We do need to find that first bound, however,
and can we do better than O(n) on that?

Binary Search

• A straightforward way to search for a key in a
sorted set that lets you access any position
directly (like our ArrayList-based Ordered Search
Table).
1. Jump to the middle element. Is it what you’re

looking for? Great! You’re done.
2. If if’s larger than what you’re looking for, jump to the

middle element between it and the front.
3. If it’s smaller than what you’re looking for, jump to

the middle element between it and the back.
4. Repeat until the key is found or you’ve found where

it would’ve been if it were in the set.

Binary Search Example

• Say we’re given the following Ordered Search
Table and are looking for an entry with a key
of 20.

Binary Search Example

• First let’s look at the key in the middle of the
array – it’s smaller than what we want, so we
know we should look somewhere between it
and the last entry.

Binary Search Example

• One we’ve separated out our subset (maybe a
recursive call? A loop?), we repeat the process.

• We look at the middle entry again, and presto!

Algorithm BinarySearch(S,k,low,high):
 Input: An ordered array list S storing n entries and
 integers low and high.
 Output: An entry of S with key equal to k and index
 between low and high, if such an entry exists, and
 otherwise null.
 if low > high then
 return null
 else
 mid <- floor((low + high)/2)
 e <- S.get(mid)
 if k = e.getKey() then
 return e
 else if k < e.getKey() then
 return BinarySearch(S,k,low,mid-1)
 else
 return BinarySearch(S,k,mid+1, high)

Asymtotic Analysis Update

• Now that we’ve seen list-based Maps, Hash
Tables, and Ordered Search Tables, let’s
remind ourselves of their relative efficiencies.

Map Method List HashTable Ordered Search Table

size, isEmpty O(1) O(1) O(1)

entrySet O(n) O(n) O(n)

get O(n) O(1)/O(n) O(log n)

put O(1) O(1) O(n)

remove O(n) O(1)/O(n) O(n)

Recap – An Ordered Summary

• Ordered Maps are a version of Map that allows
for returning ordered subsets of entries according
to their keys.

• Java has no Ordered Map interface or class, but
its ideas are represented in other interfaces and
classes.

• Ordered Search Tables are an ArrayList-based
version of Ordered Maps.

• Binary Search is a classic algorithm for finding a
particular value in a sorted set.

