
CMPT 225: Data Structures & Programming
– Unit 18 –
Hash Tables

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• Keys in Maps as Locations

• The Hash Table

• Bucket Arrays and Hash Functions

• Hash Codes

• Compression Functions

• Collision Handling

• Hash Tables in Java

Unique Keys as Addresses

• The big change Maps make from previous key-
based data structures is that the keys are
unique.

• The straightforward way to think of this is a
case where every key is paired to one piece of
data which now has a unique location in the
map – student ID number keys each linking to
one student’s name, for example.

Unique Keys as Addresses

• Another way of thinking about them is each
unique key in the map could also mark a
location for storing anything that shares that
key.

The Hash Table

• A Hash Table is a form of Map which treats each
unique key as a pre-existing location, and stores
new entries in these locations based on their key.

• More of a way to implement a Map than it is a
distinct data structure with its own ADT (sort of
like how we handled Heaps).

• Hash Tables are made through combining two
components: a bucket array and a hash function.

Bucket Array

• An array A of size N, where each cell of A
corresponds with a particular unique key.

• Each cell becomes a “bucket to store any
entry that shares the same key.

• Ideally, each
bucket should
have just one
entry in it, for the
fastest and most
accurate retrieval.

Drawbacks of the Bucket Approach

• As with regular arrays, empty cells are wasted
space, which makes the correlation of keys to
buckets important for efficiency.

• The number of empty cells will depend on how
the n entries are distributed across the N
buckets, which depends on whatever the chosen
keys happen to be.

• What if your data set doesn’t happen to have a
well-distributed integer variable you can just
make into a key, anyway?

Hash Function

• A mathematical function for mapping your
chosen key k to an integer from 0 to N-1, so it can
be matched up with a bucket.

• If we have an Entry e with Value v and Key k that
we want to store in our Hash Table’s Bucket
Array A, the Hash Function h(k) will give us the
index for which bucket in A to store the entity in,
so that we can write e(k,v) -> A[h(k)].

• This lets us apply the bucket array to arbitrary
keys, no matter the kind of data they are (names,
dates, several different variables, etc).

Image credit: https://www.grubstreet.com/2015/10/mcdonalds-starts-all-day-breakfast.html

https://www.grubstreet.com/2015/10/mcdonalds-starts-all-day-breakfast.html
https://www.grubstreet.com/2015/10/mcdonalds-starts-all-day-breakfast.html
https://www.grubstreet.com/2015/10/mcdonalds-starts-all-day-breakfast.html
https://www.grubstreet.com/2015/10/mcdonalds-starts-all-day-breakfast.html
https://www.grubstreet.com/2015/10/mcdonalds-starts-all-day-breakfast.html
https://www.grubstreet.com/2015/10/mcdonalds-starts-all-day-breakfast.html
https://www.grubstreet.com/2015/10/mcdonalds-starts-all-day-breakfast.html
https://www.grubstreet.com/2015/10/mcdonalds-starts-all-day-breakfast.html
https://www.grubstreet.com/2015/10/mcdonalds-starts-all-day-breakfast.html
https://www.grubstreet.com/2015/10/mcdonalds-starts-all-day-breakfast.html

Hash Function

• A hash function has
two steps:

– Mapping the key k to an
integer, called the hash
code.

– Mapping the hash code
to an integer between 0
and N-1 to pair it with a
bucket, called the
compression function.

Hash Codes

• Hash codes have a few distinct properties:

– They may be any integer, even negative, not just
the ones from 0 to N-1.

– The hash function must consistently produce the
same hash code if given the same key (or a key
equal to it, if it’s technically a different instance).

– Our choice of hash function and key should
hopefully give us a unique hash code for every
entry, to cut down on collisions (two entries with
different keys winding up in the same bucket).

Generating Hash Codes in Java

• Java has a default hashCode() function built
into the Object class which generates a hash
code integer based on the memory location
for the object.

• Not always appropriate, however – two
Strings of the same word but stored
separately would generate different keys,
which is why the String class in Java overrides
hashCode() to compare the contents.

Generating Your Own Hash Codes

• If your key is an integer, or can be cast to an
integer (byte, short, char), you’re already done –
that’s your hash code.

• Floats have a Float.floatToIntBits(x) function that
also gives them a hash-appropriate int
representation.

• For longs and doubles, whose bit representations
are twice that of integers, you can sum the
integer representation of their first 32 bits with
that of their last 32 bits (consider functions like
Long.toBinaryString() to get you those bits).

Polynomial Hash Codes

• Summing components to produce an integer, like
we did with longs and doubles, won’t work if the
order of the components matter (e.g. two String
keys, one being “temp01”, the other “temp10”).

• One hash function for adding multiple
components together is a polynomial hash code,
where each component is multiplied by a
constant based on its position in the sequence.

• Intuitively, this spaces out the integer results
depending on their position, reducing the risk of
collisions.

Writing a Polynomial Hash Code

• Say I’m trying to hash a String. Each
character’s integer representation x will be
multiplied by some constant, a, to the power
of the String’s length k minus that character’s
position in the String:

 x0ak-1 + x1ak-2 + … + xk-2a + xk-1

Polynomial Hash Code Example

• If I were hashing the word “cat” with an a of
33, I could fill out the function like so:

 x0a2+ x1a + x2

 99*332 + 97*331 + 116 = 111128

• Studies have shown that, for Strings in English,
some good choices for a include 33, 37, 39,
and 41. These produce relatively few
collisions.

What Makes a “Good” Hash Function?

• One that distributes all keys among the available buckets
randomly, but also evenly.

• To do that, we need a unique hash code for every key,
and ideally ones that won’t cluster together into the
same bucket after compression.

• We need to avoid patterns, which is difficult to solve
generally since the keys could be any kind of arbitrary
data – using birthdates as a key would mean smoothing
out sociological patterns of when people have children!

• Good hash functions for different types of data are often
found experimentally, with common and important
subjects like a particular language having well-known
good functions.

Compression Function

• The process of turning the hash code into a
bucket for the key’s entry.

• As the name implies, this function compresses
the hash code into a number between 0 and N-1.

• This is also where most collisions occur,
depending on the ratio between n and N.

• There are two broad methods used for
compression, the Division Method and the MAD
Method.

The Division Method

• The direct method –
you’ve got an integer i
hash code and an
integer N of buckets, so
just evaluate i mod N.

The MAD Method
• A brilliant

idea to avoid
wars by
making it so
we’re
constantly at
risk of
Mutually
Assured
Destruction.

Image credit: https://www.nbcnews.com/id/wbna18237365

https://www.nbcnews.com/id/wbna18237365
https://www.nbcnews.com/id/wbna18237365

The (Actual) MAD Method

• Stands for Multiply, Add
and Divide, a more
sophisticated method
meant to smooth out
repeating patterns in a set
of keys.

• Given a key integer i, N
buckets, a prime number p
that’s larger than N, and
random integers a and b
between 0 and p – 1 (with
at least a > 0), evaluate
((ai + b) mod p) mod N.

Collisions

• Maps require keys to be unique, but in the
case of Hash Tables, that only applies to the
index of each bucket in the bucket array –
individual entries may have the same key.

• When the hash function produces the same
hash code for two entries, or the compression
function turns two different hash codes into
the same bucket, this is called a collision.

Collisions

• Collisions are to be avoided where possible,
they hurt the efficiency of the Hash Table, and
the choice of hash and compression functions
can affect their number.

Collision-Handling Schemes

• When collisions do occur, there needs to be a
plan for dealing with them.

• It comes down to whether you will accept
multiple entries in the same bucket, or go
looking for another empty bucket instead.

1. Separate Chaining covers setting up a new
data structure within each bucket for storing
multiple entries.

2. Open Addressing covers a variety of similar
techniques for finding a new bucket.

Separate Chaining

• We just accept that a collision has happened
and store both (and any subsequent) entries
in a Map stored within the bucket.

Maps Within Buckets

• Requires some extra implementation work,
since now when adding to the Hash Table you
need to convert the contents of a bucket into
a Map if there’s already something there.

• When removing, you now need to check if a
bucket is empty, has one entry, or has a Map
of entries, and decide on a rule for how to
choose between the entries stored in that
Map – randomly? Using a secondary key?

Open Addressing

• One drawback to Separate Chaining is it’s
space-intensive to have to make a whole Map
every time there’s a collision.

• Open Addressing simply tries to find another
empty bucket instead.

• It’s not that easy, though – now the way you
go looking for a second bucket can also be a
source of patterns that cause collisions.

Probing

• Probing strategies start simply checking
nearby buckets for the first empty one they
can find to put the colliding entry in.

• Linear Probing tries the next bucket after the
colliding one, then the next one, and so on.

• Quadratic Probing tries to reduce patterns by
checking buckets quadratically (1 away, 4
away, 9 away…).

Probing

• Requires a lot of tweaking to
make work, particularly to
remove() – now after looking
up the original bucket, it may
have to retrace the probing
pattern looking for the key.

• If it removes an entry, it also
has to swap in a special
“available” marker instead of a
null, so any future remove()’s
will keep looking to find its
neighbours with the same key.

Double-Hashing

• If your first hash function didn’t find an empty
bucket, try another hash function instead.

• Add your first hash code to a second one
generated by a second hash function, then
compress again.

• If that still doesn’t work, multiply that second
hash hash code by 2 and re-add it to the first one
and try again, then multiply by 3, and so on.

• Creates many of the same implementation issues
as Probing (retracing your steps) but may avoid
some clustering patterns.

The Load Factor

• The risk of collisions grows to an inevitability as
the number of entries n approaches and then
passes the number of buckets N.

• This ratio between n and N is called the Load
Factor, and influences design decisions between
the different Hash Table tools we’ve considered –
a low load is space-inefficient, while a high load
requires a lot of collision-handling.

• If the Load Factor becomes too high, it’s time to
increase the number of buckets and completely
rebuild the Hash Table – called Rehashing.

Hash Tables in Java

• Java does provide a standard Hashtable class,
which implements the Map interface (it also
extends Dictionary, more on that later!)

Let’s Implement a Hash Table!

• We’ll write a Hash Table class in Java that
implements Map (and therefore also Entry), uses
Linear Probing for collisions, MAD for
compression, and maintains a Load Factor of 0.5
or less.

1

2

3

4

5

6

Why Are Hash Tables Efficient?

• The process of converting any key to an
assigned bucket, while complicated, is still a
constant time operation.

• This recreates many conditions and benefits
of an array, like constant-time accessing, as
well as drawbacks like unused space and
periodic rebuilding – but only if collisions
remain low.

Analyzing Hash Tables

• A traditional asymptotic analysis would assume a
worst-case hash function which always collides,
requiring O(n) for every operation.

• Since the entire advantage of Hash Tables is found in
good hash functions that minimize collisions, we have
to use average-case analysis and a bunch of statistical
methods that are beyond the scope of this course.

• Studies suggest a load factor of >0.5 for open
addressing and >0.9 for separate chaining is optimal.
The HashTable class in Java uses 0.75, but it may also
be re-specified.

When To Use a Hash Table?

• Ironically, useful for counting collisions, like the
frequency of different words in a document.

• Caches and other quick-access memory
solutions often use hash tables to store and
retrieve chunks of data.

• Essentially, most situations where an array
would be useful, except instead of tracking
entries using their position in the array, you can
use a key.

Recap: Hashing it Out

• Hash Tables are an implementation of Maps that treats each
unique key as a location.

• It combines a Bucket Array and Hash Function to match any
arbitrary key with a (hopefully unique) location in the data
structure.

• Hash functions first generate a Hash Code from the arbitrary
key, then run it through the Compression Function to match
it to a bucket.

• Collisions occur when two different entries get assigned the
same bucket, and require a Collision Handling Scheme to
manage.

• Good hash functions will minimize the number of collisions.
• There’s a lot of design and implementation questions around

making a Hash Table, but thankfully Java has a standard
one.

