
CMPT 225: Data Structures & Programming
– Unit 17 –

Adaptable Priority Queues & Maps

Dr. Jack Thomas

Simon Fraser University

Spring 2021

Today’s Topics

• Refreshing Priority Queues

• Justifying Adaptation

• The Adaptable PQ ADT

• Locations, Positions, & Entries

• Maps

Post-Reading-Week Refresher

• Before the break, we introduced Heap-based
Priority Queues, which organize data into
binary trees sorted according to their keys.

 • This combined the
benefits of nonlinear
storage with those
of nonpositional
access.

There Are Still Some Limitations

• Our Priority Queue is still a Queue, meaning we
can only reliably retrieve the entry stored at the
root.

• This also makes changing an entry’s key or value
more complicated, since we need to find it first –
and making changes could require reordering the
entire Priority Queue.

• The Heap structure makes this even more
complicated, since now we need to care about
tree traversals and Heap sorting to make any
changes.

For Example: Consider An Airport

• At first, a normal Priority Queue might seem like enough to
let us board a plane by priority.
– What if a passenger pays to upgrade their ticket?
– What if an existing ticket gets transferred to a different

passenger?
– What if a passenger cancels last-minute and re-books on a

different flight?

Image credit: https://www.internationalairportreview.com
/article/81738/smarter-way-cut-queue/

https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/
https://www.internationalairportreview.com/article/81738/smarter-way-cut-queue/

Making Priority Queues Adaptable

• We want to augment our existing Priority
Queue with ways to remove a given entry, or
modify an entry’s key or value, and be
confident that the Priority Queue is still in the
correct order.

• This will require reintroducing the idea of
positions to PQs, so we can start considering
and acting on more than just the root or head.

The Adaptable Priority Queue ADT

• An extension of the Priority Queue data
structure that allows for removing and editing
arbitrary entries, not just the highest priority.

• Standard methods include all of the PQ ones, as
well as:
– Remove: Removes a given entry from the PQ, while

ensuring it remains ordered.
– replaceKey: Swaps the key of a given entry, then

adjusting the ordering as needed.
– replaceValue: Swaps the value of a given entry, which

probably also requires re-checking the ordering.

Adaptable Priority Queues in Java

• In Java, the Adaptable Priority Queue is…

• …the PriorityQueue class! The same one you’ve
already been using!

• It has a remove() function built-in that lets you
remove any arbitrary entry, so long as you have a
reference to it (which might be the hard part).

• However, it doesn’t have replaceKey() or
replaceEntry() functions, you’ll just have to
remove() the old object and then re-add it after
modifying it.

Location-Aware Entries

• When implementing our own Adaptable
Priority Queues, we need to start storing each
entry’s location alongside the value and key.

• Depending on the underlying data structure,
this location is stored in one of two ways:

– In the sorted list implementation, the location is
that entry’s place in the linear sequence.

– In the heap implementation, the location is that
entry’s node in the heap’s tree structure.

Distinguishing Between
Positions and Entries

• With both lists and heaps, the key is
separating the position within the structure
from the entry that occupies that position.

Position-Entry-Location Walkthrough

• Picture a double-linked-list-based Adaptable
Priority Queue.

• The actual list is made up of Positions, a kind of
node that store links to the nodes ahead and
behind in the list, and an Entry.

• The Entry contains the value, key, and location,
which is a link to the Position currently storing it.

• Now you can use the Location links between the
Position and Entry to track each Entry for the
sake of functions like remove().

Efficiency

• If you’ll recall, our options for how to organize
the underlying data structure for a PQ are an
unsorted list (constant adds, O(n) removes),
sorted list (constant removes, O(n) adds), or
heap (log n for both).

• Adding position-awareness makes our remove
and replace functions constant for the unsorted
list, O(log n) for the heap, and constant for
remove/O(n) for replace for sorted lists.

Next Up: Maps

• Another detail about key-based structures so
far is that keys don’t have to be unique.

• What if they were?

• In a Map, every key stored is unique.

Image credit: https://www.amazon.ca/Hirsh-SOHO-Drawer-Cabinet-Charcoal/dp/B01ASUWBQM

• Imagine a filing cabinet, where
every folder (entry) has a unique
label (key), and they’re kept in
order (position) inside a cabinet
drawer (the map itself).

https://www.amazon.ca/Hirsh-SOHO-Drawer-Cabinet-Charcoal/dp/B01ASUWBQM
https://www.amazon.ca/Hirsh-SOHO-Drawer-Cabinet-Charcoal/dp/B01ASUWBQM
https://www.amazon.ca/Hirsh-SOHO-Drawer-Cabinet-Charcoal/dp/B01ASUWBQM
https://www.amazon.ca/Hirsh-SOHO-Drawer-Cabinet-Charcoal/dp/B01ASUWBQM
https://www.amazon.ca/Hirsh-SOHO-Drawer-Cabinet-Charcoal/dp/B01ASUWBQM
https://www.amazon.ca/Hirsh-SOHO-Drawer-Cabinet-Charcoal/dp/B01ASUWBQM
https://www.amazon.ca/Hirsh-SOHO-Drawer-Cabinet-Charcoal/dp/B01ASUWBQM
https://www.amazon.ca/Hirsh-SOHO-Drawer-Cabinet-Charcoal/dp/B01ASUWBQM
https://www.amazon.ca/Hirsh-SOHO-Drawer-Cabinet-Charcoal/dp/B01ASUWBQM
https://www.amazon.ca/Hirsh-SOHO-Drawer-Cabinet-Charcoal/dp/B01ASUWBQM

Grouping Together Related Content

• It can help to remember that the value attached
to each key can be more than a single piece of
data – it can be a whole object, or a collection of
objects.

• In a filing cabinet, the label of each folder could
be a student’s ID number, while inside the folder
could be any and all documents having to do
with that student.

• Maps are therefore sometimes called associative
stores, because each entry stores everything
associated with that unique key.

• It can also help to think of keys in a Map as
functioning like an index.

The Map ADT

• A unique-key-based data structure, storing a set of key-
value pairs called entries.

• Standard methods include:
– Get: Return the value associated with the given key.
– Put: If a given key doesn’t exist in the map yet, add it and

the given value, otherwise replace the existing value of the
given key with the given value.

– Remove: Removes and returns the entry associated with a
given key.

– keySet: Returns a collection of all the keys stored in the
entries.

– Values: Returns a collection of all the values stored in the
entries.

– entrySet: Returns a collection of all entries.

The Map in Java

• Java has a standard Interface for a Map, but
no standard class.

• Be aware that implementing this interface will
require you to use an Entry class that
implements the Interface for
java.util.Map.Entry, in order to satisfy the
entrySet() interface function.

Get Algorithm

Algorithm get(k):
 Input: A key k.
 Output: The value for key k in map M, or null
 if there is no key k in M.
 for each position p in S.positions() do
 if p.element().getKey() = k then
 return p.element().getValue()
 return null

• Given a Map M based on a List S, we want to
get the value associated with a key k.

Put Algorithm

Algorithm put(k, v):
 Input: A key-value pair (k, v).
 Output: The old value associated with key k in M,
 or null if k is new.
 for each position p in S.positions() do
 if p.element().getKey() = k then
 t <- p.element().getValue()
 B.set(p, (k,v))
 return t
 S.addLast((k,v))
 n <- n + 1

Remove Algorithm

Algorithm remove(k):
 Input: A key k.
 Output: The (removed) value for key k in M, or null
 if k is not in M.
 for each position p in S.positions() do
 if p.element().getKey() = k then
 t <- p.element().getValue()
 S.remove(p)
 n <- n - 1
 return t
 return null

Recap – Adapting the Lecture

• Adaptable Priority Queues extend PQs by adding
the ability to remove arbitrary entries and adjust
an entry’s key or value.

• To do this, we reintroduce the notion of
positions and locations to key-based data
structures.

• The standard Java PriorityQueue is adaptable
already, with some minor workarounds.

• Maps are a key-based data structure where every
key is unique.

• Java doesn’t provide a Map class, but it does
provide a Map interface.

